Tag Archives: qemu

Running the Steam Deck’s OS in a virtual machine using QEMU

SteamOS desktop

Introduction

The Steam Deck is a handheld gaming computer that runs a Linux-based operating system called SteamOS. The machine comes with SteamOS 3 (code name “holo”), which is in turn based on Arch Linux.

Although there is no SteamOS 3 installer for a generic PC (yet), it is very easy to install on a virtual machine using QEMU. This post explains how to do it.

The goal of this VM is not to play games (you can already install Steam on your computer after all) but to use SteamOS in desktop mode. The Gamescope mode (the console-like interface you normally see when you use the machine) requires additional development to make it work with QEMU and will not work with these instructions.

A SteamOS VM can be useful for debugging, development, and generally playing and tinkering with the OS without risking breaking the Steam Deck.

Running the SteamOS desktop in a virtual machine only requires QEMU and the OVMF UEFI firmware and should work in any relatively recent distribution. In this post I’m using QEMU directly, but you can also use virt-manager or some other tool if you prefer, we’re emulating a standard x86_64 machine here.

General concepts

SteamOS is a single-user operating system and it uses an A/B partition scheme, which means that there are two sets of partitions and two copies of the operating system. The root filesystem is read-only and system updates happen on the partition set that is not active. This allows for safer updates, among other things.

There is one single /home partition, shared by both partition sets. It contains the games, user files, and anything that the user wants to install there.

Although the user can trivially become root, make the root filesystem read-write and install or change anything (the pacman package manager is available), this is not recommended because

  • it increases the chances of breaking the OS, and
  • any changes will disappear with the next OS update.

A simple way for the user to install additional software that survives OS updates and doesn’t touch the root filesystem is Flatpak. It comes preinstalled with the OS and is integrated with the KDE Discover app.

Preparing all necessary files

The first thing that we need is the installer. For that we have to download the Steam Deck recovery image from here: https://store.steampowered.com/steamos/download/?ver=steamdeck&snr=

Once the file has been downloaded, we can uncompress it and we’ll get a raw disk image called steamdeck-recovery-4.img (the number may vary).

Note that the recovery image is already SteamOS (just not the most up-to-date version). If you simply want to have a quick look you can play a bit with it and skip the installation step. In this case I recommend that you extend the image before using it, for example with ‘truncate -s 64G steamdeck-recovery-4.img‘ or, better, create a qcow2 overlay file and leave the original raw image unmodified: ‘qemu-img create -f qcow2 -F raw -b steamdeck-recovery-4.img steamdeck-recovery-extended.qcow2 64G

But here we want to perform the actual installation, so we need a destination image. Let’s create one:

$ qemu-img create -f qcow2 steamos.qcow2 64G

Installing SteamOS

Now that we have all files we can start the virtual machine:

$ qemu-system-x86_64 -enable-kvm -smp cores=4 -m 8G \
    -device usb-ehci -device usb-tablet \
    -device intel-hda -device hda-duplex \
    -device VGA,xres=1280,yres=800 \
    -drive if=pflash,format=raw,readonly=on,file=/usr/share/ovmf/OVMF.fd \
    -drive if=virtio,file=steamdeck-recovery-4.img,driver=raw \
    -device nvme,drive=drive0,serial=badbeef \
    -drive if=none,id=drive0,file=steamos.qcow2

Note that we’re emulating an NVMe drive for steamos.qcow2 because that’s what the installer script expects. This is not strictly necessary but it makes things a bit easier. If you don’t want to do that you’ll have to edit ~/tools/repair_device.sh and change DISK and DISK_SUFFIX.

SteamOS installer shortcuts

Once the system has booted we’ll see a KDE Plasma session with a few tools on the desktop. If we select “Reimage Steam Deck” and click “Proceed” on the confirmation dialog then SteamOS will be installed on the destination drive. This process should not take a long time.

Now, once the operation finishes a new confirmation dialog will ask if we want to reboot the Steam Deck, but here we have to choose “Cancel”. We cannot use the new image yet because it would try to boot into the Gamescope session, which won’t work, so we need to change the default desktop session.

SteamOS comes with a helper script that allows us to enter a chroot after automatically mounting all SteamOS partitions, so let’s open a Konsole and make the Plasma session the default one in both partition sets:

$ sudo steamos-chroot --disk /dev/nvme0n1 --partset A
# steamos-readonly disable
# echo '[Autologin]' > /etc/sddm.conf.d/zz-steamos-autologin.conf
# echo 'Session=plasma.desktop' >> /etc/sddm.conf.d/zz-steamos-autologin.conf
# steamos-readonly enable
# exit

$ sudo steamos-chroot --disk /dev/nvme0n1 --partset B
# steamos-readonly disable
# echo '[Autologin]' > /etc/sddm.conf.d/zz-steamos-autologin.conf
# echo 'Session=plasma.desktop' >> /etc/sddm.conf.d/zz-steamos-autologin.conf
# steamos-readonly enable
# exit

After this we can shut down the virtual machine. Our new SteamOS drive is ready to be used. We can discard the recovery image now if we want.

Booting SteamOS and first steps

To boot SteamOS we can use a QEMU line similar to the one used during the installation. This time we’re not emulating an NVMe drive because it’s no longer necessary.

$ cp /usr/share/OVMF/OVMF_VARS.fd .
$ qemu-system-x86_64 -enable-kvm -smp cores=4 -m 8G \
   -device usb-ehci -device usb-tablet \
   -device intel-hda -device hda-duplex \
   -device VGA,xres=1280,yres=800 \
   -drive if=pflash,format=raw,readonly=on,file=/usr/share/ovmf/OVMF.fd \
   -drive if=pflash,format=raw,file=OVMF_VARS.fd \
   -drive if=virtio,file=steamos.qcow2 \
   -device virtio-net-pci,netdev=net0 \
   -netdev user,id=net0,hostfwd=tcp::2222-:22

(the last two lines redirect tcp port 2222 to port 22 of the guest to be able to SSH into the VM. If you don’t want to do that you can omit them)

If everything went fine, you should see KDE Plasma again, this time with a desktop icon to launch Steam and another one to “Return to Gaming Mode” (which we should not use because it won’t work). See the screenshot that opens this post.

Congratulations, you’re running SteamOS now. Here are some things that you probably want to do:

  • (optional) Change the keyboard layout in the system settings (the default one is US English)
  • Set the password for the deck user: run ‘passwd‘ on a terminal
  • Enable / start the SSH server: ‘sudo systemctl enable sshd‘ and/or ‘sudo systemctl start sshd‘.
  • SSH into the machine: ‘ssh -p 2222 deck@localhost

Updating the OS to the latest version

The Steam Deck recovery image doesn’t install the most recent version of SteamOS, so now we should probably do a software update.

  • First of all ensure that you’re giving enought RAM to the VM (in my examples I run QEMU with -m 8G). The OS update might fail if you use less.
  • (optional) Change the OS branch if you want to try the beta release: ‘sudo steamos-select-branch beta‘ (or main, if you want the bleeding edge)
  • Check the currently installed version in /etc/os-release (see the BUILD_ID variable)
  • Check the available version: ‘steamos-update check
  • Download and install the software update: ‘steamos-update

Note: if the last step fails after reaching 100% with a post-install handler error then go to Connections in the system settings, rename Wired Connection 1 to something else (anything, the name doesn’t matter), click Apply and run steamos-update again. This works around a bug in the update process. Recent images fix this and this workaround is not necessary with them.

As we did with the recovery image, before rebooting we should ensure that the new update boots into the Plasma session, otherwise it won’t work:

$ sudo steamos-chroot --partset other
# steamos-readonly disable
# echo '[Autologin]' > /etc/sddm.conf.d/zz-steamos-autologin.conf
# echo 'Session=plasma.desktop' >> /etc/sddm.conf.d/zz-steamos-autologin.conf
# steamos-readonly enable
# exit

After this we can restart the system.

If everything went fine we should be running the latest SteamOS release. Enjoy!

Reporting bugs

SteamOS is under active development. If you find problems or want to request improvements please go to the SteamOS community tracker.

Edit 06 Jul 2022: Small fixes, mention how to install the OS without using NVMe.

Subcluster allocation for qcow2 images

In previous blog posts I talked about QEMU’s qcow2 file format and how to make it faster. This post gives an overview of how the data is structured inside the image and how that affects performance, and this presentation at KVM Forum 2017 goes further into the topic.

This time I will talk about a new extension to the qcow2 format that seeks to improve its performance and reduce its memory requirements.

Let’s start by describing the problem.

Limitations of qcow2

One of the most important parameters when creating a new qcow2 image is the cluster size. Much like a filesystem’s block size, the qcow2 cluster size indicates the minimum unit of allocation. One difference however is that while filesystems tend to use small blocks (4 KB is a common size in ext4, ntfs or hfs+) the standard qcow2 cluster size is 64 KB. This adds some overhead because QEMU always needs to write complete clusters so it often ends up doing copy-on-write and writing to the qcow2 image more data than what the virtual machine requested. This gets worse if the image has a backing file because then QEMU needs to copy data from there, so a write request not only becomes larger but it also involves additional read requests from the backing file(s).

Because of that qcow2 images with larger cluster sizes tend to:

  • grow faster, wasting more disk space and duplicating data.
  • increase the amount of necessary I/O during cluster allocation,
    reducing the allocation performance.

Unfortunately, reducing the cluster size is in general not an option because it also has an impact on the amount of metadata used internally by qcow2 (reference counts, guest-to-host cluster mapping). Decreasing the cluster size increases the number of clusters and the amount of necessary metadata. This has direct negative impact on I/O performance, which can be mitigated by caching it in RAM, therefore increasing the memory requirements (the aforementioned post covers this in more detail).

Subcluster allocation

The problems described in the previous section are well-known consequences of the design of the qcow2 format and they have been discussed over the years.

I have been working on a way to improve the situation and the work is now finished and available in QEMU 5.2 as a new extension to the qcow2 format called extended L2 entries.

The so-called L2 tables are used to map guest addresses to data clusters. With extended L2 entries we can store more information about the status of each data cluster, and this allows us to have allocation at the subcluster level.

The basic idea is that data clusters are now divided into 32 subclusters of the same size, and each one of them can be allocated separately. This allows combining the benefits of larger cluster sizes (less metadata and RAM requirements) with the benefits of smaller units of allocation (less copy-on-write, smaller images). If the subcluster size matches the block size of the filesystem used inside the virtual machine then we can eliminate the need for copy-on-write entirely.

So with subcluster allocation we get:

  • Sixteen times less metadata per unit of allocation, greatly reducing the amount of necessary L2 cache.
  • Much faster I/O during allocation when the image has a backing file, up to 10-15 times more I/O operations per second for the same cluster size in my tests (see chart below).
  • Smaller images and less duplication of data.

This figure shows the average number of I/O operations per second that I get with 4KB random write requests to an empty 40GB image with a fully populated backing file.

I/O performance comparison between traditional and extended qcow2 images

Things to take into account:

  • The performance improvements described earlier happen during allocation. Writing to already allocated (sub)clusters won’t be any faster.
  • If the image does not have a backing file chances are that the allocation performance is equally fast, with or without extended L2 entries. This depends on the filesystem, so it should be tested before enabling this feature (but note that the other benefits mentioned above still apply).
  • Images with extended L2 entries are sparse, that is, they have holes and because of that their apparent size will be larger than the actual disk usage.
  • It is not recommended to enable this feature in compressed images, as compressed clusters cannot take advantage of any of the benefits.
  • Images with extended L2 entries cannot be read with older versions of QEMU.

How to use this?

Extended L2 entries are available starting from QEMU 5.2. Due to the nature of the changes it is unlikely that this feature will be backported to an earlier version of QEMU.

In order to test this you simply need to create an image with extended_l2=on, and you also probably want to use a larger cluster size (the default is 64 KB, remember that every cluster has 32 subclusters). Here is an example:

$ qemu-img create -f qcow2 -o extended_l2=on,cluster_size=128k img.qcow2 1T

And that’s all you need to do. Once the image is created all allocations will happen at the subcluster level.

More information

This work was presented at the 2020 edition of the KVM Forum. Here is the video recording of the presentation, where I cover all this in more detail:

You can also find the slides here.

Acknowledgments

This work has been possible thanks to Outscale, who have been sponsoring Igalia and my work in QEMU.

Igalia and Outscale

And thanks of course to the rest of the QEMU development team for their feedback and help with this!