Review of Igalia Multimedia activities (2020/H1)

This blog post is a review of the various activities the Igalia Multimedia team was involved in during the first half of 2020.

Our previous reports are:

Just before a new virus turned into pandemics we could enjoy our traditional FOSDEM. There, our colleague Phil gave a talk about many of the topics covered in this report.

GstWPE

GstWPE’s wpesrc element, produces a video texture representing a web page rendered off-screen by WPE.

We have worked on a new iteration of the GstWPE demo, focusing on one-to-many, web-augmented overlays, broadcasting with WebRTC and Janus.

Also, since the merge of gstwpe plugin in gst-plugins-bad (staging area for new elements) new users have come along spotting rough areas and improving the element along the way.

Video Editing

GStreamer Editing Services (GES) is a library that simplifies the creation of multimedia editing applications. It is based on the GStreamer multimedia framework and is heavily used by Pitivi video editor.

Implemented frame accuracy in the GStreamer Editing Services (GES)

As required by the industry, it is now possible to reference all time in frame number, providing a precise mapping between frame number and play time. Many issues were fixed in GStreamer to reach the precision enough for make this work. Also intensive regression tests were added.

Implemented time effects support in GES

Important refactoring inside GStreamer Editing Services have happened to allow cleanly and safely change playback speed of individual clips.

Implemented reverse playback in GES

Several issues have been fixed inside GStreamer core elements and base classes in order to support reverse playback. This allows us to implement reliable and frame accurate reverse playback for individual clips.

Implemented ImageSequence support in GStreamer and GES

Since OpenTimelineIO implemented ImageSequence support, many users in the community had said it was really required. We reviewed and finished up imagesequencesrc element, which had been awaiting review for years.

This feature is now also supported in the OpentimelineIO GES adapater.

Optimized nested timelines preroll time by an order of magnitude

Caps negotiation, done while the pipeline transitions from pause state to playing state, testing the whole pipeline functionality, was the bottleneck for nested timelines, so pipelines were reworked to avoid useless negotiations. At the same time, other members of GStreamer community have improved caps negotiation performance in general.

Last but not least, our colleague Thibault gave a talk in The Pipeline Conference about The Motion Picture Industry and Open Source Software: GStreamer as an Alternative, explaining how and why GStreamer could be leveraged in the motion picture industry to allow faster innovation, and solve issues by reusing all the multi-platform infrastructure the community has to offer.

WebKit multimedia

There has been a lot of work on WebKit multimedia, particularly for WebKitGTK and WPE ports which use GStreamer framework as backend.

WebKit Flatpak SDK

But first of all we would like to draw readers attention to the new WebKit Flatpak SDK. It was not a contribution only from the multimedia team, but rather a joint effort among different teams in Igalia.

Before WebKit Flatpak SDK, JHBuild was used for setting up a WebKitGTK/WPE environment for testing and development. Its purpose to is to provide a common set of well defined dependencies instead of relying on the ones available in the different Linux distributions, which might bring different outputs. Nonetheless, Flatpak offers a much more coherent environment for testing and develop, isolated from the rest of the building host, approaching to reproducible outputs.

Another great advantage of WebKit Flatpak SDK, at least for the multimedia team, is the possibility of use gst-build to setup a custom GStreamer environment, with latest master, for example.

Now, for sake of brevity, let us sketch an non-complete list of activities and achievements related with WebKit multimedia.

General multimedia

Media Source Extensions (MSE)

Encrypted Media Extension (EME)

One of the major results of this first half, is the upstream of ThunderCDM, which is an implementation of a Content Decryption Module, providing Widevine decryption support. Recently, our colleague Xabier, published a blog post on this regard.

And it has enabled client-side video rendering support, which ensures video frames remain protected in GPU memory so they can’t be reached by third-party. This is a requirement for DRM/EME.

WebRTC

GStreamer

Though we normally contribute in GStreamer with the activities listed above, there are other tasks not related with WebKit. Among these we can enumerate the following:

GStreamer VAAPI

  • Reviewed a lot of patches.
  • Support for media-driver (iHD), the new VAAPI driver for Intel, mostly for Gen9 onwards. There are a lot of features with this driver.
  • A new vaapioverlay element.
  • Deep code cleanups. Among these we would like to mention:
    • Added quirk mechanism for different backends.
    • Change base classes to GstObject and GstMiniObject of most of classes and buffers types.
  • Enhanced caps negotiation given current driver’s constraints

Conclusions

The multimedia team in Igalia has keep working, along the first half of this strange year, in our three main areas: browsers (mainly on WebKitGTK and WPE), video editing and GStreamer framework.

We worked adding and enhancing WebKitGTK and WPE multimedia features in order to offer a solid platform for media providers.

We have enhanced the Video Editing support in GStreamer.

And, along these tasks, we have contribuited as much in GStreamer framework, particulary in hardware accelerated decoding and encoding and VA-API.

New VA-API H.264 decoder in gst-plugins-bad

Recently, a new H.264 decoder, using VA-API, was merged in gst-plugins-bad.

Why another VA-based H.264 decoder if there is already gstreamer-vaapi?

As usual, an historical perspective may give some clues.

It started when Seungha Yang implemented the GStreamer decoders for Windows using DXVA2 and D3D11 APIs.

Perhaps we need one step back and explain what are stateless decoders.

Video decoders are magic and opaque boxes where we push encoded frames, and later we’ll pop full decoded frames in raw format. This is how OpenMAX and V4L2 decoders work, for example.

Internally we can imagine those magic and opaque boxes has two main operations:

  • Codec state handling
  • Signal processing like Fourier-related transformations (such as DCT), entropy coding, etc. (DSP, in general)

The codec state handling basically extracts, from the stream, the frame’s parameters and its compressed data, so the DSP algorithms can decode the frames. Codec state handling can be done with generic CPUs, while DSP algorithms are massively improved through specific purpose processors.

These video decoders are known as stateful decoders, and usually they are distributed through binary and closed blobs.

Soon, silicon vendors realized they can offload the burden of state handling to third-party user-space libraries, releasing what it is known as stateless decoders. With them, your code not only has to push frames into the opaque box, but now it shall handle the codec specifics to provide all the parameters and references for each frame. VAAPI and DXVA2 are examples of those stateless decoders.

Returning to Seungha’s implementation, in order to get theirs DXVA2/D3D11 decoders, they also needed a state handler library for each codec. And Seungha wrote that library!

Initially they wanted to reuse the state handling in gstreamer-vaapi, which works pretty good, but its internal library, from the GStreamer perspective, is over-engineered: it is impossible to rip out only the state handling without importing all its data types. Which is kind of sad.

Later, Nicolas Dufresne, realized that this library can be re-used by other GStreamer plugins, because more stateless decoders are now available, particularly V4L2 stateless, in which he is interested. Nicolas moved Seungha’s code into a library in gst-plugins-bad.

Currently, libgstcodecs provides state handling of H.264, H.265, VP8 and VP9.

Let’s return to our original question: Why another VA-based H.264 decoder if there is already one in gstreamer-vaapi?

The quick answer is «to pay my technical debt».

As we already mentioned, gstreamer-vaapi is big and over-engineered, though we have being simplifying the internal libraries, in particular He Junyan, has done a lot of work replacing the internal base class, GstVaapiObject, withGstObject or GstMiniObject. Also, this kind of projects, where there’s a lot of untouched code, it carries a lot of cargo cult decisions.

So I took the libgstcodecs opportunity to write a simple, thin and lean, H.264 decoder, using VA new API calls (vaExportSurfaceHandle(), for example) and learning from other implementations, such as FFMpeg and ChromeOS. This exercise allowed me to identify where are the dusty spots in gstreamer-vaapi and how they should be fixed (and we have been doing it since then!).

Also, this opportunity lead me to learn a bit more about the H.264 specification since I implemented the reference picture list handling, and fixed a small bug in Chromium.

Now, let me be crystal clear: GStreamer VA-API is not going anywhere. It is, right now, one of the most feature-complete implementations using VA-API, even with its integration issues, and we are working on them, particularly, Intel folks are working hard on a new AV1 decoder, enhancing encoders and adding new video post-processing features.

But, this new vah264dec is an experimental VA-API decoder, which aims towards a tight integration with GStreamer, oriented to provide a good experience in most of the common use cases and to enhance the common libgstcodecs library shared with other stateless decoders, looking to avoid Intel specific nuances.

These are the main characteristics and plans of this new decoder:

  • It use, by default, a DRM connection to VA display, avoiding the troubles of choosing X11 or Wayland.
    • It uses the first found DRM device as VA display
    • In the future, users will be able to provide their custom VA display through the pipeline’s context.
  • It requires libva >= 1.6
  • No multiview/stereo profiles, neither interlaced streams, because libgstcodecs doesn’t handle them yet
  • It is incompatible with gstreamer-vaapi: mixing elements might lead to problems.
  • Even if memory:VAMemory is exposed, it is not handled yet by any other element yet.
    • Users will get VASurfaces via mapping as GstGL does with textures.
  • Caps templates are generated dynamically generated by querying VAAPI
  • YV12 and I420 are added for system memory caps because they seem to be supported for all the drivers when downloading frames onto main memory, as they are used by xvimagesink and others, avoiding color conversion.
  • Decoding surfaces aren’t bounded to context, so they can grow beyond the DBP size, allowing smooth reverse playback.
  • There isn’t yet error handling and recovery.
  • The element is supposed to spawn if different renderD nodes with VA-API driver support are found (like gstv4l2), but it hasn’t been tested yet.

Now you may be asking how do I use vah264dec?

Currently vah264dec has NONE rank, which means that it will never be autoplugged, but you can use the trick of the environment variable GST_PLUGIN_FEATURE_RANK:

$ GST_PLUGIN_FEATURE_RANK=vah264dec:259 gst-play-1.0 ~/video.mp4

And that’s it!

Thanks.

Review of the Igalia Multimedia team Activities (2019/H2)

This blog post is a review of the various activities the Igalia Multimedia team was involved along the second half of 2019.

Here are the previous 2018/H2 and 2019/H1 reports.

GstWPE

Succinctly, GstWPE is a GStreamer plugin which allows to render web-pages as a video stream where it frames are GL textures.

Phil, its main author, wrote a blog post explaning at detail what is GstWPE and its possible use-cases. He wrote a demo too, which grabs and previews a live stream from a webcam session and blends it with an overlay from wpesrc, which displays HTML content. This composited live stream can be broadcasted through YouTube or Twitch.

These concepts are better explained by Phil himself in the following lighting talk, presented at the last GStreamer Conference in Lyon:

Video Editing

After implementing a deep integration of the GStreamer Editing Services (a.k.a GES) into Pixar’s OpenTimelineIO during the first half of 2019, we decided to implement an important missing feature for the professional video editing industry: nested timelines.

Toward that goal, Thibault worked with the GSoC student Swayamjeet Swain to implement a flexible API to support nested timelines in GES. This means that users of GES can now decouple each scene into different projects when editing long videos. This work is going to be released in the upcoming GStreamer 1.18 version.

Henry Wilkes also implemented the support for nested timeline in OpenTimelineIO making GES integration one of the most advanced one as you can see on that table:

Feature OTIO EDL FCP7 XML FCP X AAF RV ALE GES
Single Track of Clips W-O
Multiple Video Tracks W-O
Audio Tracks & Clips W-O
Gap/Filler
Markers N/A
Nesting W-O
Transitions W-O
Audio/Video Effects N/A
Linear Speed Effects R-O
Fancy Speed Effects
Color Decision List N/A

Along these lines, Thibault delivered a 15 minutes talk, also in the GStreamer Conference 2019:

After detecting a few regressions and issues in GStreamer, related to frame accuracy, we decided to make sure that we can seek in a perfectly frame accurate way using GStreamer and the GStreamer Editing Services. In order to ensure that, an extensive integration testsuite has been developed, mostly targeting most important container formats and codecs (namely mxf, quicktime, h264, h265, prores, jpeg) and issues have been fixed in different places. On top of that, new APIs are being added to GES to allow expressing times in frame number instead of nanoseconds. This work is still ongoing but should be merged in time for GStreamer 1.18.

GStreamer Validate Flow

GstValidate has been turning into one of the most important GStreamer testing tools to check that elements behave as they are supposed to do in the framework.

Along with our MSE work, we found that other way to specify tests, related with produced buffers and events through specific pads, was needed. Thus, Alicia developed a new plugin for GstValidate: Validate Flow.

Alicia gave an informative 30 minutes talk about GstValidate and the new plugin in the last GStreamer Conference too:

GStreamer VAAPI

Most of the work along the second half of 2019 were maintenance tasks and code reviews.

We worked mainly on memory restrictions per backend driver, and we reviewed a big refactor: internal encoders now use GstObject, instead of the custom GstVaapiObject. Also we reviewed patches for new features such as video rotation and cropping in vaapipostproc.

Servo multimedia

Last year we worked integrating media playing in Servo. We finally delivered hardware accelerated video playback in Linux and Android. We worked also for Windows and Mac ports but they were not finished. As natural, most of the work were in servo/media crate, pushing code and reviewing contributions. The major tasks were to rewrite the media player example and the internal source element looking to handle the download playbin‘s flag properly.

We also added WebGL integration support with <video> elements, thus webpages can use video frames as WebGL textures.

Finally we explored how to isolate the multimedia processing in a dedicated thread or process, but that task remains pending.

WebKit Media Source Extension

We did a lot of downstream and upstream bug fixing and patch review, both in WebKit and GStreamer, for our MSE GStreamer-based backend.

Along this line we improved WebKitMediaSource to use playbin3 but also compatibility with older GStreamer versions was added.

WebKit WebRTC

Most of the work in this area were maintenance and fix regressions uncovered by the layout tests. Besides, the support for the Rasberry Pi was improved by handling encoded streams from v4l2 video sources, with some explorations with Minnowboard on top of that.

Conferences

GStreamer Conference

Igalia was Gold sponsor this last GStreamer Conference held in Lyon, France.

All team attended and five talks were delivered. Only Thibault presented, besides the video editing one which we already referred, another two more: One about GstTranscoder API and the other about the new documentation infrastructure based in Hotdoc:

We also had a productive hackfest, after the conference, where we worked on AV1 Rust decoder, HLS Rust demuxer, hardware decoder flag in playbin, and other stuff.

Linaro Connect

Phil attended the Linaro Connect conference in San Diego, USA. He delivered a talk about WPE/Multimedia which you can enjoy here:

Demuxed

Charlie attended Demuxed, in San Francisco. The conference is heavily focused on streaming and codec engineering and validation. Sadly there are not much interest in GStreamer, as the main focus is on FFmpeg.

RustFest

Phil and I attended the last RustFest in Barcelona. Basically we went to meet with the Rust community and we attended the “WebRTC with GStreamer-rs” workshop presented by Sebastian Dröge.

GStreamer-VAAPI 1.16 and libva 2.6 in Debian

Debian has migrated libva 2.6 into testing. This release includes a pull request that changes how the drivers are selected to be loaded and used. As the pull request mentions:

libva will try to load iHD firstly, if it failed. then it will load i965.

Also, Debian testing has imported that iHD driver with two flavors: intel-media-driver and intel-media-driver-non-free. So basically iHD driver is now the main VAAPI driver for Intel platforms, though it only supports the new chips, the old ones still require i965-va-driver.

Sadly, for current GStreamer-VAAPI stable, the iHD driver is not included in its driver white list. And this will pose a problem for users that have installed either of the intel-media-driver packages, because, by default, such driver is ignored and the VAAPI GStreamer elements won’t be registered.

There are three temporal workarounds (mutually excluded) for those users (updated):

  1. Uninstall intel-media-driver* and install (or keep) the old i965-va-driver-shaders/i965-va-driver.
  2. Export, by default in your session, export LIBVA_DRIVER_NAME=i965. Normally this is done adding the variable exportation in $HOME/.profile file. This environment variable will force libva to load the i965 driver.
  3. And finally, export, by default in your sessions, GST_VAAPI_ALL_DRIVERS=1. This is not advised since many applications, such as Epiphany, might fail.

We prefer to not include iHD in the stable white list because most of the work done for that driver has occurred after release 1.16.

In the case of GStreamer-VAAPI master branch (actively in develop) we have merged the iHD in the white list, since the Intel team has been working a lot to make it work. Though, it will be released for GStreamer version 1.18.

Review of Igalia’s Multimedia Activities (2018/H2)

This is the first semiyearly report about Igalia’s activities around multimedia, covering the second half of 2018.

Great length of this report was exposed in Phil’s talk surveying mutimedia development in WebKitGTK and WPE:

WebKit Media Source Extensions (MSE)

MSE is a specification that allows JS to generate media streams for playback for Web browsers that support HTML 5 video and audio.

Last semester we upstreamed the support to WebM format in WebKitGTK with the related patches in GStreamer, particularly in qtdemux, matroskademux elements.

WebKit Encrypted Media Extensions (EME)

EME is a specification for enabling playback of encrypted content in Web bowsers that support HTML 5 video.

In a downstream project for WPE WebKit we managed to have almost full test coverage in the YoutubeTV 2018 test suite.

We merged our contributions in upstream, WebKit and GStreamer, most of what is legal to publish, for example, making demuxers aware of encrypted content and make them to send protection events with the initialization data and the encrypted caps, in order to select later the decryption key.

We started to coordinate the upstreaming process of a new implementation of CDM (Content Decryption Module) abstraction and there will be even changes in that abstraction.

Lighting talk about EME implementation in WPE/WebKitGTK in GStreamer Conference 2018.

WebKit WebRTC

WebRTC consists of several interrelated APIs and real time protocols to enable Web applications and sites to captures audio, or A/V streams, and exchange them between browsers without requiring an intermediary.

We added GStreamer interfaces to LibWebRTC, to use it for the network part, while using GStreamer for the media capture and processing. All that was upstreamed in 2018 H2.

Thibault described thoroughly the tasks done for this achievement.

Talk about WebRTC implementation in WPE/WebKitGTK in WebEngines hackfest 2018.

Servo/media

Servo is a browser engine written in Rust designed for high parallelization and high GPU usage.

We added basic support for <video> and <audio> media elements in Servo. Later on, we added the GstreamerGL bindings for Rust in gstreamer-rs to render GL textures from the GStreamer pipeline in Servo.

Lighting talk in the GStreamer Conference 2018.

GstWPE

Taking an idea from the GStreamer Conference, we developed a GStreamer source element that wraps WPE. With this source element, it is possible to blend a web page and video in a single video stream; that is, the output of a Web browser (to say, a rendered web page) is used as a video source of a GStreamer pipeline: GstWPE. The element is already merged in the gst-plugins-bad repository.

Talk about GstWPE in FOSDEM 2019

Demo #1

Demo #2

GStreamer VA-API and gst-MSDK

At last, but not the least, we continued helping with the maintenance of GStreamer-VAAPI and gst-msdk, with code reviewing and on-going migration of the internal library to GObject.

Other activities

The second half of 2018 was also intense in terms of conferences and hackfest for the team:


Thanks to bear with us along all this blog post and to keeping under your radar our work.

Building gst-msdk with MediaSDK opensource

I tried, several months ago, the open source version of Intel MediaSDK and it was a complete mess. In order to review some patches for gst-msdk I tried it again. I am surprised how the situation has improved since then.

Install dependencies

$ sudo apt get install libva-dev vainfo cmake ccache
$ sudo apt build-dep gstreamer1.0 gst-plugins-{base,good,bad}1.0
$ sudo apt remove libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

Seting up the workplace

$ sudo mkdir /opt/intel
$ sudo chown usuario:usuario /opt/intel
$ mkdir ~/msdk
$ cd ~/msdk

Build MediaSDK

It will be built in its source directory: ~/msdk/MediaSDK/build

It will be installed in /opt/intel

$ git clone https://github.com/Intel-Media-SDK/MediaSDK.git
$ cd MediaSDK
$ mkdir build
$ cd build
$ cmake ..
$ make
$ make install

Build media-driver

$ cd ~/msdk
$ git clone https://github.com/intel/media-driver.git
$ git clone https://github.com/intel/gmmlib.git
$ mkdir build
$ cd build
$ cmake ../media-driver
$ make

Let’s install media-driver in /opt/intel too

$ cd ~/msdk/build
$ cp ./media_driver/iHD_drv_video.so /opt/intel

But don’t remove, rename or move the directori ~/msdk/build because iHD_drv_video.so links against libigdgmm.so.5 which is there. Thus either you keep the directory or you install that library in a path searchable by the linker, or set the environment variable LD_LIBRARY_PATH

Test environment

$ LIBVA_DRIVERS_PATH=/opt/intel LIBVA_DRIVER_NAME=iHD vainfo
  libva info: VA-API version 1.3.0
  libva info: va_getDriverName() returns -1
  libva info: User requested driver 'iHD'
  libva info: Trying to open /opt/intel/iHD_drv_video.so
  libva info: Found init function __vaDriverInit_1_3
  libva info: va_openDriver() returns 0
 vainfo: VA-API version: 1.3 (libva 2.2.0)
 vainfo: Driver version: Intel iHD driver - 1.0.0
 vainfo: Supported profile and entrypoints
   VAProfileNone                   : VAEntrypointVideoProc
   VAProfileNone                   : VAEntrypointStats
   VAProfileMPEG2Simple            : VAEntrypointVLD
   VAProfileMPEG2Simple            : VAEntrypointEncSlice
   VAProfileMPEG2Main              : VAEntrypointVLD
   VAProfileMPEG2Main              : VAEntrypointEncSlice
   VAProfileH264Main               : VAEntrypointVLD
   VAProfileH264Main               : VAEntrypointEncSlice
   VAProfileH264Main               : VAEntrypointFEI
   VAProfileH264Main               : VAEntrypointEncSliceLP
   VAProfileH264High               : VAEntrypointVLD
   VAProfileH264High               : VAEntrypointEncSlice
   VAProfileH264High               : VAEntrypointFEI
   VAProfileH264High               : VAEntrypointEncSliceLP
   VAProfileVC1Simple              : VAEntrypointVLD
   VAProfileVC1Main                : VAEntrypointVLD
   VAProfileVC1Advanced            : VAEntrypointVLD
   VAProfileJPEGBaseline           : VAEntrypointVLD
   VAProfileJPEGBaseline           : VAEntrypointEncPicture
   VAProfileH264ConstrainedBaseline: VAEntrypointVLD
   VAProfileH264ConstrainedBaseline: VAEntrypointEncSlice
   VAProfileH264ConstrainedBaseline: VAEntrypointFEI
   VAProfileH264ConstrainedBaseline: VAEntrypointEncSliceLP
   VAProfileVP8Version0_3          : VAEntrypointVLD
   VAProfileHEVCMain               : VAEntrypointVLD
   VAProfileHEVCMain               : VAEntrypointEncSlice
   VAProfileHEVCMain               : VAEntrypointFEI

Setup gst-build

It will be build in its source directory: ~/msdk/gst-build/build

$ cd ~/msdk
$ git clone https://gitlab.freedesktop.org/gstreamer/gst-build.git
$ cd gst-build
$ export INTELMEDIASDKROOT=/opt/intel/mediasdk
$ meson build -Dpython=disabled -Dgst-plugins-bad:msdk=enabled
$ ninja -C build

Check for build elements

$ ninja -C ~/msdk/gst-build/build  uninstalled
[gst-master] $ GST_VAAPI_ALL_DRIVERS=1 \
               LIBVA_DRIVERS_PATH=/opt/intel \
               LIBVA_DRIVER_NAME=iHD \
               gst-inspect-1.0 | egrep "vaapi|msdk"
 vaapi:  vaapijpegdec: VA-API JPEG decoder
vaapi:  vaapimpeg2dec: VA-API MPEG2 decoder
vaapi:  vaapih264dec: VA-API H264 decoder
vaapi:  vaapivc1dec: VA-API VC1 decoder
vaapi:  vaapivp8dec: VA-API VP8 decoder
vaapi:  vaapih265dec: VA-API H265 decoder
vaapi:  vaapipostproc: VA-API video postprocessing
vaapi:  vaapidecodebin: VA-API Decode Bin
vaapi:  vaapisink: VA-API sink
vaapi:  vaapimpeg2enc: VA-API MPEG-2 encoder
vaapi:  vaapih265enc: VA-API H265 encoder
vaapi:  vaapijpegenc: VA-API JPEG encoder
vaapi:  vaapih264enc: VA-API H264 encoder
msdk:  msdkvpp: MSDK Video Postprocessor
msdk:  msdkvc1dec: Intel MSDK VC1 decoder
msdk:  msdkvp8enc: Intel MSDK VP8 encoder
msdk:  msdkvp8dec: Intel MSDK VP8 decoder
msdk:  msdkmpeg2enc: Intel MSDK MPEG2 encoder
msdk:  msdkmpeg2dec: Intel MSDK MPEG2 decoder
msdk:  msdkmjpegenc: Intel MSDK MJPEG encoder
msdk:  msdkmjpegdec: Intel MSDK MJPEG decoder
msdk:  msdkh265enc: Intel MSDK H265 encoder
msdk:  msdkh265dec: Intel MSDK H265 decoder
msdk:  msdkh264enc: Intel MSDK H264 encoder
msdk:  msdkh264dec: Intel MSDK H264 decoder

Rembember

Remember to export these environment variables (perhaps you what to create a script file to set them):

export GST_VAAPI_ALL_DRIVERS=1
export LIBVA_DRIVERS_PATH=/opt/intel
 export LIBVA_DRIVER_NAME=iHD

How to setup a gst-build environment with Intel’s VA-API stack

gst-build is far superior than gst-uninstalled scripts for developing GStreamer, mainly because its meson and ninja usage. Nonetheless, to integrate external dependencies it is not as easy as in gst-uninstalled.

This guide aims to show how to integrate GStreamer-VAAPI dependencies, in this case with the Intel VA-API driver.

Dependencies

For now we will need meson master, since it this patch is required. The pull request is already merged but it is unreleased yet.

Installation

clone gst-build repository

$ git clone git://anongit.freedesktop.org/gstreamer/gst-build
$ cd gst-build

apply custom patch for gst-build

The patch will add the repositories for libva and intel-vaapi-driver.

$ wget https://people.igalia.com/vjaquez/gst-build-vaapi/0001-add-libva-and-intel-vaapi-driver-as-subprojects.patch
$ git am 0001-add-libva-and-intel-vaapi-driver-as-subprojects.patch

0001-add-libva-and-intel-vaapi-driver-as-subprojects.patch

configure

Running this command, all dependency repositories will be cloned, symbolic links created, and the build directory configured.

$ meson bulid

apply custom patches for libva, intel-vaapi-driver and gstreamer-vaapi

libva

This patch is required since the headers files uninstalled paths doesn’t match with the ones in the “include” directives.

$ cd libva
$ wget https://people.igalia.com/vjaquez/gst-build-vaapi/0001-build-add-headers-for-uninstalled-setup.patch
$ git am 0001-build-add-headers-for-uninstalled-setup.patch
$ cd -

0001-build-add-headers-for-uninstalled-setup.patch

intel-vaapi-driver

The patch handles libva dependency as a subproject.

$ cd intel-vaapi-driver
$ wget https://people.igalia.com/vjaquez/gst-build-vaapi/0001-meson-support-libva-as-subproject.patch
$ git am 0001-meson-support-libva-as-subproject.patch
$ cd -

0001-meson-support-libva-as-subproject.patch

gstreamer-vaapi

Note to myself: this patch must be split and merged in upstream.

$ cd gstreamer-vaapi
$ wget https://people.igalia.com/vjaquez/gst-build-vaapi/0001-build-meson-libva-gst-uninstall-friendly.patch
$ git am 0001-build-meson-libva-gst-uninstall-friendly.patch
$ cd -

0001-build-meson-libva-gst-uninstall-friendly.patch updated: 2018/04/24

build

$ ninja -C build

And wait a couple minutes.

run uninstalled environment for testing

$ ninja -C build uninstalled
[gst-master] $ gst-inspect-1.0 vaapi
Plugin Details:
  Name                     vaapi
  Description              VA-API based elements
  Filename                 /opt/gst/gst-build/build/subprojects/gstreamer-vaapi/gst/vaapi/libgstvaapi.so
  Version                  1.15.0.1
  License                  LGPL
  Source module            gstreamer-vaapi
  Binary package           gstreamer-vaapi
  Origin URL               http://bugzilla.gnome.org/enter_bug.cgi?product=GStreamer

  vaapih264enc: VA-API H264 encoder
  vaapimpeg2enc: VA-API MPEG-2 encoder
  vaapisink: VA-API sink
  vaapidecodebin: VA-API Decode Bin
  vaapipostproc: VA-API video postprocessing
  vaapivc1dec: VA-API VC1 decoder
  vaapih264dec: VA-API H264 decoder
  vaapimpeg2dec: VA-API MPEG2 decoder
  vaapijpegdec: VA-API JPEG decoder

  9 features:
  +-- 9 elements

GStreamer VA-API Troubleshooting

GStreamer VA-API is not a trivial piece of software. Even though, in my opinion it is a bit over-engineered, the complexity relies on its layered architecture: the user must troubleshoot in which layer is the failure.

So, bear in mind this architecture:

GStreamer VA-API is not a trivial piece of software. Even though, in my opinion it is a bit over-engineered, the complexity relies on its layered architecture: the user must troubleshoot in which layer is the failure.

So, bear in mind this architecture:

libva architecture
libva architecture

And the point of failure could be anywhere.

Drivers

libva is a library designed to load another library called driver or back-end. This driver is responsible to talk with the kernel, windowing platform, memory handling library, or any other piece of software or hardware that actually will do the video processing.

There are many drivers in the wild. As it is an API aiming to stateless video processing, and the industry is moving towards that way to process video, it is expected more drivers would appear in the future.

Nonetheless, not all the drivers have the same level of maturity, and some of them are abandon-ware. For this reason we decided in GStreamer VA-API, some time ago, to add a white list of functional drivers, basically, those developed by Mesa3D and this one from Intel™. If you wish to disable that white-list, you can do it by setting an environment variable:

$ export GST_VAAPI_ALL_DRIVERS=1

Remember, if you set it, you are on your own, since we do not trust on the maturity of that driver yet.

Internal libva↔driver version

Thus, there is an internal API between libva and the driver and it is versioned, meaning that the internal API version of the installed libva library must match with the internal API exposed by the driver. One of the causes that libva could not initialize a driver could be because the internal API version does not match.

Drivers path and driver name

By default there is a path where libva looks for drivers to load. That path is defined at compilation time. Following Debian’s file-system hierarchy standard (FHS) it should be set by distributions in /usr/lib/x86_64-linux-gnu/dri/. But the user can control this path with an environment variable:

$ export LIBVA_DRIVERS_PATH=${HOME}/src/intel-vaapi-driver/src/.libs

The driver path, as a directory, might contain several drivers. libva will try to guess the correct one by querying the instantiated VA display (which could be either KMS/DRM, Wayland, Android or X11). If the user instantiates a VA display different of his running environment, the guess will be erroneous, the library loading will fail.

Although, there is a way for the user to set the driver’s name too. Again, by setting an environment variable:

$ export LIBVA_DRIVER_NAME=iHD

With this setting, libva will try to load iHD_drv_video.so (a new and experimental open source driver from Intel™, targeted for MediaSDK —do not use it yet with GStreamer VAAPI—).

vainfo

vainfo is the diagnostic tool for VA-API. In a couple words, it will iterate on a list of VA displays, in try-and-error strategy, and try to initialize VA. In case of success, vainfo will report the driver signature, and it will query the driver for the available profiles and entry-points.

For example, my skylake board for development will report

$ vainfo
error: can't connect to X server!
libva info: VA-API version 1.1.0
libva info: va_getDriverName() returns 0
libva info: Trying to open /home/vjaquez/gst/master/intel-vaapi-driver/src/.libs/i965_drv_video.so
libva info: Found init function __vaDriverInit_1_1
libva info: va_openDriver() returns 0
vainfo: VA-API version: 1.1 (libva 2.1.1.pre1)
vainfo: Driver version: Intel i965 driver for Intel(R) Skylake - 2.1.1.pre1 (2.1.0-41-g99c3748)
vainfo: Supported profile and entrypoints
      VAProfileMPEG2Simple            : VAEntrypointVLD
      VAProfileMPEG2Simple            : VAEntrypointEncSlice
      VAProfileMPEG2Main              : VAEntrypointVLD
      VAProfileMPEG2Main              : VAEntrypointEncSlice
      VAProfileH264ConstrainedBaseline: VAEntrypointVLD
      VAProfileH264ConstrainedBaseline: VAEntrypointEncSlice
      VAProfileH264ConstrainedBaseline: VAEntrypointEncSliceLP
      VAProfileH264ConstrainedBaseline: VAEntrypointFEI
      VAProfileH264ConstrainedBaseline: VAEntrypointStats
      VAProfileH264Main               : VAEntrypointVLD
      VAProfileH264Main               : VAEntrypointEncSlice
      VAProfileH264Main               : VAEntrypointEncSliceLP
      VAProfileH264Main               : VAEntrypointFEI
      VAProfileH264Main               : VAEntrypointStats
      VAProfileH264High               : VAEntrypointVLD
      VAProfileH264High               : VAEntrypointEncSlice
      VAProfileH264High               : VAEntrypointEncSliceLP
      VAProfileH264High               : VAEntrypointFEI
      VAProfileH264High               : VAEntrypointStats
      VAProfileH264MultiviewHigh      : VAEntrypointVLD
      VAProfileH264MultiviewHigh      : VAEntrypointEncSlice
      VAProfileH264StereoHigh         : VAEntrypointVLD
      VAProfileH264StereoHigh         : VAEntrypointEncSlice
      VAProfileVC1Simple              : VAEntrypointVLD
      VAProfileVC1Main                : VAEntrypointVLD
      VAProfileVC1Advanced            : VAEntrypointVLD
      VAProfileNone                   : VAEntrypointVideoProc
      VAProfileJPEGBaseline           : VAEntrypointVLD
      VAProfileJPEGBaseline           : VAEntrypointEncPicture
      VAProfileVP8Version0_3          : VAEntrypointVLD
      VAProfileVP8Version0_3          : VAEntrypointEncSlice
      VAProfileHEVCMain               : VAEntrypointVLD
      VAProfileHEVCMain               : VAEntrypointEncSlice

And my AMD board with stable packages replies:

$ vainfo
libva info: VA-API version 0.40.0
libva info: va_getDriverName() returns 0
libva info: Trying to open /usr/lib64/dri/radeonsi_drv_video.so
libva info: Found init function __vaDriverInit_0_40
libva info: va_openDriver() returns 0
vainfo: VA-API version: 0.40 (libva )
vainfo: Driver version: mesa gallium vaapi
vainfo: Supported profile and entrypoints
      VAProfileMPEG2Simple            : VAEntrypointVLD
      VAProfileMPEG2Main              : VAEntrypointVLD
      VAProfileVC1Simple              : VAEntrypointVLD
      VAProfileVC1Main                : VAEntrypointVLD
      VAProfileVC1Advanced            : VAEntrypointVLD
      VAProfileH264ConstrainedBaseline: VAEntrypointVLD
      VAProfileH264ConstrainedBaseline: VAEntrypointEncSlice
      VAProfileH264Main               : VAEntrypointVLD
      VAProfileH264Main               : VAEntrypointEncSlice
      VAProfileH264High               : VAEntrypointVLD
      VAProfileH264High               : VAEntrypointEncSlice
      VAProfileNone                   : VAEntrypointVideoProc

Does this mean that VA-API processes video? No. It means that there is an usable VA display which could open a driver correctly and libva can extract symbols from it.

I would like to mention another tool, not official, but I like it a lot, since it extracts almost of the VA information available in the driver: vadumpcaps.c, written by Mark Thompson.

GStreamer VA-API registration

When GStreamer is launched, normally it will register all the available plugins and plugin features (elements, device providers, etc.). All that data is cache and keep until the cache file is deleted or the cache invalidated by some event.

At registration time, GStreamer VA-API will instantiate a DRM-based VA display, which works with no need of a real display (in other words, headless), and will query the driver for the profiles and entry-points tuples, in order to register only the available elements (encoders, decoders. sink, post-processor). If the DRM VA display fails, a list of VA displays will be tried.

In the case that libva could not load any driver, or the driver is not in the white-list, GStreamer VA-API will not register any element. Otherwise gst-inspect-1.0 will show the registered elements:

$ gst-inspect-1.0 vaapi
Plugin Details:
  Name                     vaapi
  Description              VA-API based elements
  Filename                 /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libgstvaapi.so
  Version                  1.12.4
  License                  LGPL
  Source module            gstreamer-vaapi
  Source release date      2017-12-07
  Binary package           gstreamer-vaapi
  Origin URL               http://bugzilla.gnome.org/enter_bug.cgi?product=GStreamer

  vaapijpegdec: VA-API JPEG decoder
  vaapimpeg2dec: VA-API MPEG2 decoder
  vaapih264dec: VA-API H264 decoder
  vaapivc1dec: VA-API VC1 decoder
  vaapivp8dec: VA-API VP8 decoder
  vaapih265dec: VA-API H265 decoder
  vaapipostproc: VA-API video postprocessing
  vaapidecodebin: VA-API Decode Bin
  vaapisink: VA-API sink
  vaapimpeg2enc: VA-API MPEG-2 encoder
  vaapih265enc: VA-API H265 encoder
  vaapijpegenc: VA-API JPEG encoder
  vaapih264enc: VA-API H264 encoder

  13 features:
  +-- 13 elements

Beside the normal behavior, GStreamer VA-API will also invalidate GStreamer’s cache at every boot, or when any of the mentioned environment variables change.

Conclusion

A simple task list to review when GStreamer VA-API is not working at all is this:

#. Check your LIBVA_* environment variables
#. Verify that vainfo returns sensible information
#. Invalidate GStreamer’s cache (or just delete the file)
#. Check the output of gst-inspect-1.0 vaapi

And, if you decide to file a bug in bugzilla, please do not forget to attach the output of vainfo and the logs if the developer asks for them.

GStreamer VA-API 1.14: what’s new?

As you may already know, there is a new release of GStreamer, 1.14. In this blog post we will talk about the new features and improvements of GStreamer VA-API module, though you have a more comprehensive list of changes in the release notes.

Most of the topics explained along this blog post are already mentioned in the release notes, but a bit more detailed.

DMABuf usage

We have improved DMA-buf’s usage, mostly at downstream.

In the case of upstream, we just got rid a nasty hack which detected when to instantiate and use a buffer pool in sink pad with a dma-buf based allocator. This functionality has been already broken for a while, and that code was the wrong way to enabled it. The sharing of a dma-buf based buffer pool to upstream is going to be re-enabled after bug 792034 is merged.

For downstream, we have added the handling of memory:DMABuf caps feature. The purpose of this caps feature is to negotiate a media when the buffers are not map-able onto user space, because of digital rights or platform restrictions.

For example, currently intel-vaapi-driver doesn’t allow the mapping of its produced dma-buf descriptors. But, as we cannot know if a back-end produces or not map-able dma-buf descriptors, gstreamer-vaapi, when the allocator is instantiated, creates a dummy buffer and tries to map it, if it fails, memory:DMABuf caps feature is negotiated, otherwise, normal video caps are used.

VA-API usage

First of all, GStreamer VA-API has support now for libva-2.0, this means VA-API 1.10. We had to guard some deprecated symbols and the new ones. Nowadays most of distributions have upgraded to libva-2.0.

We have improved the initialization of the VA display internal structure (GstVaapiDisplay). Previously, if a X based display was instantiated, immediately it tried to grab the screen resolution. Obviously, this broke the usage of headless systems. We just delay the screen resolution check to when the VA display truly requires that information.

New API were added into VA, particularly for log handling. Now it is possible to redirect the log messages into a callback. Thus, we use it to redirect VA-API message into the GStreamer log mechanisms, uncluttering the console’s output.

Also, we have blacklisted, in autoconf and meson, libva version 0.99.0, because that version is used internally by the closed-source version of Intel MediaSDK, which is incompatible with official libva. By the way, there is a new open-source version of MediaSDK, but we will talk about it in a future blog post.

Application VA Display sharing

Normally, the object GstVaapiDisplay is shared among the pipeline through the GstContext mechanism. But this class is defined internally and it is not exposed to users since release 1.6. This posed a problem when an application wanted to create its own VA Display and share it with an embedded pipeline. The solution is a new context application message: gst.vaapi.app.Display, defined as a GstStructure with two fields: va-display with the application’s vaDisplay, and x11-display with the application’s X11 native display. In the future, a Wayland’s native handler will be processed too. Please note that this context message is only processed by vaapisink.

One precondition for this solution was the removal of the VA display cache mechanism, a lingered request from users, which, of course, we did.

Interoperability with appsink and similar

A hardware accelerated driver, as the Intel one, may have custom offsets and strides for specific memory regions. We use the GstVideoMeta to set this custom values. The problem comes when downstream does not handle this meta, for example, appsink. Then, the user expect the “normal” values for those variable, but in the case of GStreamer VA-API with a hardware based driver, when the user displays the frame, it is shown corrupted.

In order to fix this, we have to make a memory copy, from our custom VA-API images to an allocated system memory. Of course there is a big CPU penalty, but it is better than delivering wrong video frames. If the user wants a better performance, then they should seek for a different approach.

Resurrection of GstGLUploadTextureMeta for EGL renders

I know, GstGLUploadTextureMeta must die, right? I am convinced of it. But, Clutter video sink uses it, an it has a vast number of users, so we still have to support it.

Last release we had remove the support for EGL/Wayland in the last minute because we found a terrible bug just before the release. GLX support has always been there.

With Daniel van Vugt efforts, we resurrected the support for that meta in EGL. Though I expect the replacement of Clutter sink with glimagesink someday, soon.

vaapisink demoted in Wayland

vaapisink was demoted to marginal rank on Wayland because COGL cannot display YUV surfaces.

This means, by default, vaapisink won’t be auto-plugged when playing in Wayland.

The reason is because Mutter (aka GNOME) cannot display the frames processed by vaapisink in Wayland. Nonetheless, please note that in Weston, it works just fine.

Decoders

We have improved a little bit upstream renegotiation: if the new stream is compatible with the previous one, there is no need to reset the internal parser, with the exception of changes in codec-data.

low-latency property in H.264

A new property has added only to H.264 decoder: low-latency. Its purpose is for live streams that do not conform the H.264 specification (sadly there are many in the wild) and they need to twitch the spec implementation. This property force to push the frames in the decoded picture buffer as soon as possible.

base-only property in H.264

This is the result of the Google Summer of Code 2017, by Orestis Floros. When this property is enabled, all the MVC (Multiview Video Coding) or SVC (Scalable Video Coding) frames are dropped. This is useful if you want to reduce the processing time or if your VA-API driver does not support those kind of streams.

Encoders

In this release we have put a lot of effort in encoders.

Processing Regions of Interest

It is possible, for certain back-ends and profiles (for example, H.264 and H.265 encoders with Intel driver), to specify a set of regions of interest per frame, with a delta-qp per region. This mean that we would ask more quality in those regions.

In order to process regions of interest, upstream must add to the video frame, a list of GstVideoRegionOfInterestMeta. This list then is traversed by the encoder and it requests them if the VA-API profile, in the driver, supports it.

The common use-case for this feature is if you want to higher definition in regions with faces or text messages in the picture, for example.

New encoding properties

  • quality-level: For all the available encoders. This is number between 1 to 8, where a lower number means higher quality (and slower processing).

  • aud: This is for H.264 encoder only and it is available for certain drivers and platforms. When it is enabled, an AU delimiter is inserted for each encoded frame. This is useful for network streaming, and more particularly for Apple clients.

  • mbbrc: For H.264 only. Controls (auto/on/off) the macro-block bit-rate.

  • temporal-levels: For H.264 only. It specifies the number of temporal levels to include a the hierarchical frame prediction.

  • prediction-type: For H.264 only. It selects the reference picture selection mode.

    The frames are encoded as different layers. A frame in a particular layer will use pictures in lower or same layer as references. This means decoder can drop frames in upper layer but still decode lower layer frames.

    • hierarchical-p: P frames, except in top layer, are reference frames. Base layer frames are I or B.

    • hierarchical-b: B frames , except in top most layer, are reference frames. All the base layer frames are I or P.

  • refs: Added for H.265 (it was already supported for H.264). It specifies the number of reference pictures.

  • qp-ip and qp-ib: For H.264 and H.265 encoders. They handle the QP (quality parameters) difference between the I and P frames, the the I and B frames respectively.

Set media profile via downstream caps

H.264 and H.265 encoders now can configure the desired media profile through the downstream caps.

Contributors

Many thanks to all the contributors and bug reporters.

     1  Daniel van Vugt
    46  Hyunjun Ko
     1  Jan Schmidt
     3  Julien Isorce
     1  Matt Staples
     2  Matteo Valdina
     2  Matthew Waters
     1  Michael Tretter
     4  Nicolas Dufresne
     9  Orestis Floros
     1  Philippe Normand
     4  Sebastian Dröge
    24  Sreerenj Balachandran
     1  Thibault Saunier
    13  Tim-Philipp Müller
     1  Tomas Rataj
     2  U. Artie Eoff
     1  VaL Doroshchuk
   172  Víctor Manuel Jáquez Leal
     3  XuGuangxin
     2  Yi A Wang

Enabling HuC for SKL/KBL in Debian/testing

Recently, our friend Florent complained that it was impossible to set a constant bitrate when encoding H.264 using low-power profile with gstreamer-vaapi .

Low-power (LP) profiles are VA-API entry points, available in Intel SkyLake-based procesor and succesors, which provide video encoding with low power consumption.

Later on, Ullysses and Sree, pointed out that CBR in LP is ony possible if HuC is enabled in the kernel.

HuC is a firmware, loaded by i915 kernel module, designed to offload some of the media functions from the CPU to GPU. One of these functions is bitrate control when encoding. HuC saves unnecessary CPU-GPU synchronization.

In order to load HuC, it is required first to load GuC, another Intel’s firmware designed to perform graphics workload scheduling on the various graphics parallel engines.

How we can install and configure these firmwares to enable CBR in low-power profile, among other things, in Debian/testing?

Check i915 parameters

First we shall confirm that our kernel and our i915 kernel module is capable to handle this functionality:

$ sudo modinfo i915 | egrep -i "guc|huc|dmc"
firmware:       i915/bxt_dmc_ver1_07.bin
firmware:       i915/skl_dmc_ver1_26.bin
firmware:       i915/kbl_dmc_ver1_01.bin
firmware:       i915/kbl_guc_ver9_14.bin
firmware:       i915/bxt_guc_ver8_7.bin
firmware:       i915/skl_guc_ver6_1.bin
firmware:       i915/kbl_huc_ver02_00_1810.bin
firmware:       i915/bxt_huc_ver01_07_1398.bin
firmware:       i915/skl_huc_ver01_07_1398.bin
parm:           enable_guc_loading:Enable GuC firmware loading (-1=auto, 0=never [default], 1=if available, 2=required) (int)
parm:           enable_guc_submission:Enable GuC submission (-1=auto, 0=never [default], 1=if available, 2=required) (int)
parm:           guc_log_level:GuC firmware logging level (-1:disabled (default), 0-3:enabled) (int)
parm:           guc_firmware_path:GuC firmware path to use instead of the default one (charp)
parm:           huc_firmware_path:HuC firmware path to use instead of the default one (charp)

Install firmware

$ sudo apt install firmware-misc-nonfree

UPDATE: In order to install this Debian package, you should have enabled the non-free apt repository in your sources list.

Verify the firmware are installed:

$ ls -1 /lib/firmware/i915/
bxt_dmc_ver1_07.bin
bxt_dmc_ver1.bin
bxt_guc_ver8_7.bin
bxt_huc_ver01_07_1398.bin
kbl_dmc_ver1_01.bin
kbl_dmc_ver1.bin
kbl_guc_ver9_14.bin
kbl_huc_ver02_00_1810.bin
skl_dmc_ver1_23.bin
skl_dmc_ver1_26.bin
skl_dmc_ver1.bin
skl_guc_ver1.bin
skl_guc_ver4.bin
skl_guc_ver6_1.bin
skl_guc_ver6.bin
skl_huc_ver01_07_1398.bin

Update modprobe configuration

Edit or create the configuration file /etc/modprobe.d/i915.con

$ sudo vim /etc/modprobe.d/i915.conf
....
$ cat /etc/modprobe.d/i915.conf
options i915 enable_guc_loading=1 enable_guc_submission=1

Reboot

$ sudo systemctl reboot 

Verification

Now it is possible to verify that the i915 module kernel loaded the firmware correctly by looking at the kenrel logs:

$ journalctl -b -o short-monotonic -k | egrep -i "i915|dmr|dmc|guc|huc"
[   10.303849] miau kernel: Setting dangerous option enable_guc_loading - tainting kernel
[   10.303852] miau kernel: Setting dangerous option enable_guc_submission - tainting kernel
[   10.336318] miau kernel: i915 0000:00:02.0: vgaarb: changed VGA decodes: olddecodes=io+mem,decodes=io+mem:owns=io+mem
[   10.338664] miau kernel: i915 0000:00:02.0: firmware: direct-loading firmware i915/kbl_dmc_ver1_01.bin
[   10.339635] miau kernel: [drm] Finished loading DMC firmware i915/kbl_dmc_ver1_01.bin (v1.1)
[   10.361811] miau kernel: i915 0000:00:02.0: firmware: direct-loading firmware i915/kbl_huc_ver02_00_1810.bin
[   10.362422] miau kernel: i915 0000:00:02.0: firmware: direct-loading firmware i915/kbl_guc_ver9_14.bin
[   10.393117] miau kernel: [drm] GuC submission enabled (firmware i915/kbl_guc_ver9_14.bin [version 9.14])
[   10.410008] miau kernel: [drm] Initialized i915 1.6.0 20170619 for 0000:00:02.0 on minor 0
[   10.559614] miau kernel: snd_hda_intel 0000:00:1f.3: bound 0000:00:02.0 (ops i915_audio_component_bind_ops [i915])
[   11.937413] miau kernel: i915 0000:00:02.0: fb0: inteldrmfb frame buffer device

That means that HuC and GuC firmwares were loaded successfully.

Now we can check the status of the modules using sysfs

$ sudo cat /sys/kernel/debug/dri/0/i915_guc_load_status
GuC firmware status:
        path: i915/kbl_guc_ver9_14.bin
        fetch: SUCCESS
        load: SUCCESS
        version wanted: 9.14
        version found: 9.14
        header: offset is 0; size = 128
        uCode: offset is 128; size = 142272
        RSA: offset is 142400; size = 256

GuC status 0x800330ed:
        Bootrom status = 0x76
        uKernel status = 0x30
        MIA Core status = 0x3

Scratch registers:
         0:     0xf0000000
         1:     0x0
         2:     0x0
         3:     0x5f5e100
         4:     0x600
         5:     0xd5fd3
         6:     0x0
         7:     0x8
         8:     0x3
         9:     0x74240
        10:     0x0
        11:     0x0
        12:     0x0
        13:     0x0
        14:     0x0
        15:     0x0
$ sudo cat /sys/kernel/debug/dri/0/i915_huc_load_status
HuC firmware status:
        path: i915/kbl_huc_ver02_00_1810.bin
        fetch: SUCCESS
        load: SUCCESS
        version wanted: 2.0
        version found: 2.0
        header: offset is 0; size = 128
        uCode: offset is 128; size = 218304
        RSA: offset is 218432; size = 256

HuC status 0x00006080:

Test GStremer

$ gst-launch-1.0 videotestsrc num-buffers=1000 ! video/x-raw, format=NV12, width=1920, height=1080, framerate=\(fraction\)30/1 ! vaapih264enc bitrate=8000 keyframe-period=30 tune=low-power rate-control=cbr ! mp4mux ! filesink location=test.mp4
Setting pipeline to PAUSED ...
Pipeline is PREROLLING ...
Got context from element 'vaapiencodeh264-0': gst.vaapi.Display=context, gst.vaapi.Display=(GstVaapiDisplay)"\(GstVaapiDisplayGLX\)\ vaapidisplayglx0";
Pipeline is PREROLLED ...
Setting pipeline to PLAYING ...
New clock: GstSystemClock
Got EOS from element "pipeline0".
Execution ended after 0:00:11.620036001
Setting pipeline to PAUSED ...
Setting pipeline to READY ...
Setting pipeline to NULL ...
Freeing pipeline ...
$ gst-discoverer-1.0 test.mp4 
Analyzing file:///home/vjaquez/gst/master/intel-vaapi-driver/test.mp4
Done discovering file:///home/vjaquez/test.mp4

Topology:
  container: Quicktime
    video: H.264 (High Profile)

Properties:
  Duration: 0:00:33.333333333
  Seekable: yes
  Live: no
  Tags: 
      video codec: H.264 / AVC
      bitrate: 8084005
      encoder: VA-API H264 encoder
      datetime: 2017-12-07T14:29:23Z
      container format: ISO MP4/M4A

Misison accomplished!

References