GStreamer video decoder for SysLink

This blog post is another one of our series about SysLink (1, 2): finally I came with a usable GStreamer element for video decoding, which talks directly with the SysLink framework in the OMAP4’s kernel.

As we stated before, SysLink is a set of kernel modules that enables the initialization of remote processors, in a multi-core system (which might be heterogeneous), that run their own operating systems in their own memory space, and also, SysLink, enables the communication between the host processor with the remotes ones. This software and hardware setup could be viewed as an Asymmetric Multi-Processing model.

TI provides a user-space library to access the SysLink services, but I find its implementation a bit clumsy, so I took the challenge of rewrite a part of it, in a simple and straightforward fashion, as gst-dsp does for DSP/Bridge. The result is the interface syslink.h.

Simultaneously, I wrote the utility to load and monitor the operating system into the Cortex-M3 processors for the PandaBoard. This board, such as all the OMAP4-based SoCs, has two ARM Core-M3 as remote processors. Hence, this so called daemon.c, is in charge of loading the firmware images, setting the processor in its running state, allocating the interchange memory areas, and monitoring for any error message.

In order to load the images files into the processors memory areas, it is required to parse the ELF header of the files, and that is the reason of why I decided to depend on libelf, rather than write another ELF parser. Yes, one sad dependency for the daemon. The use of libelf is isolated in elf.h.

When I was developing the daemon, for debugging purposes, I needed to trace the messages generated by the images in the remote processors. For that reason I wrote tracer.c, whose only responsibility is to read and to parse the ring buffer used by the images, in the remote processors, for logging.

Now, in OMAP4, the subsystem comprised by the two Cortex-M3 processors is called Ducati. The first processor is used only for the exchange of notification messages among the host processor and the second M3 processor, where all the multimedia processing is done.

There are at least two images for the second Cortex-M3 processor: DOMX, which is closed source and focused, as far as I know, on the OMX IL interface; and, in the other hand, DCE, which is open source, it’s developed by Rob Clark, and it provides a simple interface of buffers interchange.

My work use DCE, obviously.

But, please, let me go back one step in this component description: in order to send and receive commands between the host processor and one remote processor, SysLink uses a packet based protocol, called Remote Command Messaging, or just RCM for the friends. There are two types of interfaces of RCM, the client and the server. The client interface is used by the applications running in the host processor, and they request services to the server interface, exposed by the systems running in the remote processors, it is accepting the requests and it returns results.

The RCM client interface is in rcm.h.

Above the RCM client, sits my dce.h interface, which is in charge of control the state of the video decoders and it is also in charge of handling the buffers.

But these buffers are tricky. They are not memory areas allocated by a simple malloc, instead they are buffers allocated by a mechanism in the kernel called tiler. The purpose of this mechanism is to provide buffers with capacity of 2D operations by hardware (in other words, cheap and quick in computations). These buffers are shared along all the processing pipeline, so the copies of memory areas are not needed. Of course, in order to achieve this paradise, the video renderer must handle this type of buffers too.

In my code, the interface to the tiler mechanism is in tiler.h.

And finally, the all mighty GStreamer element for video decoding: gstsyslinkvdec.c! Following the spirit of gst-dsp, this element is intended to deal with all the available video decoders in the DCE image, although for now, the H264 decoding is the only one handled.

For now, I have only tested the decoder with fakesink, because the element pushes tiled buffers onto the source pad, and, in order to have an efficient video player, it is required a video renderer that handles this type of tiled buffers. TI is developing one, pvrvideosink, but it depends on EGL, and I would like to avoid X whenever is possible.

I have not measured either the performance of this work compared with the TI’s combo (syslink user-space library / memmgr / libdce / gst-ducati), but I suspect that my approach would be little more efficient, faster, and, at least, simpler 😉

The sad news, as in every hard paced development, all these kernel mechanisms are already deprecated: SysLink and DMM-Tiler will never be mainlined into the kernel, but their successors, rproc/rpmsg and omapdrm, have a good chance. And both have a very different approach since their predecessors. Nevertheless, SysLink is already here and it is being used widely, so this effort has an opportunity for being worthy.

My current task is to decide if I should drop the 2D buffers in the video decoders or if I should develop a video renderer for them.

SysLink chronology

Introduction

Since a while the processor market has observed a Moore’s law decline: the processing velocity cannot be duplicated each year anymore. That is why, the old and almost forgotten discipline of parallel processing have had a kind of resurrection. GPUs, DSPs, multi-cores, are names that are kicking the market recently, offering to the consumers more horse power, more multi-tasking, but not more giga-hertz per core, as it used to be.

Also an ecologist spirit has hit the chips manufacturers, embracing the green-computing concept. It fits perfectly with the Moore’s law decay: more velocity, more power consumption and more injected heat into the environment. Not good. A better solution, they say, is to have a set of specialized processors which are activated when their specific task is requested by the user: do you need extensive graphics processing? No problem, the GPU will deal with it. Do you need decode or encode high resolution multimedia? We have a DSP for you. Are you only typing in an editor? We will turn off all the other processors thus saving energy.

Even though this scenario seems quite idilic, the hardware manufacturers have placed a lot of responsability upon the software. The hardware is there, it is already wired into the main memory, but now all the heuristics and logic to control the data flow among them is a huge and still open problem, yet with multiple partial solutions currently available.

And that is the case of Texas Instrument, who, since his first generation of OMAP, has delivered to the embedded and mobile market a multicore chip, with a DSP and a high end ARM processor. But deliver a chip is not enough, so TI had had to provide the system software capable to squeeze those heterogeneous processors.

At the begining, TI only delivered to its clients a mere proof of concept, with which the client could take it as a reference for his own implementation. That was the case of dsp-gateway[1], developed by Nokia as an open source project.

But as the OMAP processor capacities were increasing, TI was under more pressure from his customers to deliver a general mechanism to communicate with the embedded processors.

For that reason TI started to develop a mechanism of Inter-Processors Communication (IPC), whose approach is based on the concept that the general purpose processor (GPP), the host processor in charge of the user interactions, can control and interact with the other processors as if they were just another devices in the system. Those devices are called slave processors.

Thus, this designed IPC mechanism runs in the host processor’s kernel space and it fulfills the following responsibilities:

a) It allows the exchange of messages between the host processor with the slaves.

b) It can map files from the host’s file system into the memory space of the slave processor.

c) It permits the dynamic loading of basic operating systems and programs into the slave processors.

Also, TI has developed a programming library that provides an API with which the developers could build applications that use the processing power of the slave processors.

Sadly, whilst the development in the host processor, tipically Linux environments, is open and mostly free, the development for the slave cores (DSP in general) is still close and controlled by TI’s licences. Nevertheless, TI has provided, gratis but closed, binary objects which can be loaded into the slaves cores and they do multimedia processing.

Well, actually there have been some efforts to develop a GCC backend[2] for the C64x DSP, and also a LLVM backend[3], with which, least theorically, we could write programs to be loaded and executed through these IPC mechanisms. But they are not mature enough to use them seriously.

DSPLink and DSPBridge

In order to develop an general purpose IPC for his OMAP processors family, TI has designed the DSPBridge[4]. Oriented to multi-slave systems, agnostic to operating system, handle power management demands and other industrial weight
buzzwords.

But the DSPBridge was not ready for production until the OMAP3 came out to the market. That is why, another group inside TI, narrowed the scope of the DSPBridge’s design and slimmed its implementation, bringing out DSPLink[5], capable to run in OMAP2, OMAP3 and also in the DaVinci family.

DSPLink is distributed as an isolated kernel module and a programming library, along with the closed binaries that run in the DSP side. Nevertheless, the kernel module does not meet the requirements to be mainlined into the kernel tree. Also, it lacks of power management features and a dynamic MMU support.

On the other hand, DSPBridge has been brewed to be mainlined into the kernel, though it has stuck in the Greg’s staging tree for a long time. It seems that all the resources within TI are devoted to SysLink, the next generation of IPC. Nonetheless, many recent OMAP3 based devices uses this IPC mechanism for their multimedia applications.

Initially, TI offered an OpenMAX layer on top of the DSPBridge user-space API to process multimedia in the C64x DSP, but that solution was too bloated for some developers, and the project gst-dsp[6] appeared, which reuse the codecs for the DSP available in the TI’s OpenMAX implementation, along with the DSPBridge kernel module, to provide a thin and lean interface through GStreamer framework.

SysLink and OMAP4

Then OMAP4 came to existence. It is not only anymore a DSP and a high end ARM processor. It has a DSP, a dual ARM Cortex-M3, and, as host processor, a dual ARM Cortex-A9. Five processing units in a single silicon! How in hell we will share information among all of them? DSPBridge was not designed for this scenario in mind.

The ARM Cortex-M3 has the purpose to process video and images, and for that reason a tiler-based memory allocation is proposed, where the memory buffers are already perceived as 2D, where fast operations of mirroring and rotation are available.

Regretfully, in the case of the pandaboard (OMAP4330), the available DSP has lower capacities than the one in the beagleboards OMAP3, so the published codecs, for the OMAP3 DSP, can not be reused in the pandaboard. But video codecs for the M3 cores are currently available, and they are capable to process high definition resolutions.

The answer is SysLink. Where, besides the three operation developed for DSPBridge, two more core responsibilities were added:

a) Zero-copy shared memory: ability to “pass” data buffers to other processors by simply providing its location in shared memory

b) TILER-based memory allocation: allocate 2D-buffers with mirroring and rotation options.

c) Remote function calls: one processor can invoke functions on a remote processor

The stack offered is similar than the OMAP3: in the user space we start with the SysLink API, then an OpenMAX layer, called now as DOMX, and finally the gst-openmax elements for the GStreamer framework. And again, a bloated, buzzworded, stack for multimedia.

In his spare time, Rob Clark developed a proof of concept to remove the DOMX/gst-openmax layers and provide a set of GStreamer elements that talk directly with the SysLink API: libdce[7]/gst-ducati[8].

Either way, I feel more comfortable with the approach proposed by Felipe Contreras in gst-dsp: a slim and simple API to SysLink and plain GStreamer elements using that API. And because of that reason, I started to code a minimalistic API, copying the spirit of the dsp_bridge[9], for the SysLink interface: https://gitorious.org/vj-pandaboard/syslink/

1. http://sourceforge.net/projects/dspgateway/
2. http://www.qucosa.de/fileadmin/data/qucosa/documents/4857/data/thesis.pdf
3. https://www.studentrobotics.org/trac/wiki/Beagleboard_DSP
4. http://www.omappedia.org/wiki/DSPBridge_Project
5. http://processors.wiki.ti.com/index.php/Category:DSPLink
6. https://code.google.com/p/gst-dsp/
7. https://github.com/robclark/libdce
8. https://github.com/robclark/gst-ducati
9. https://github.com/felipec/gst-dsp/blob/HEAD/dsp_bridge.h

AAC decoder for gst-dsp

One of my purposes for this year was collaborate with the gst-dsp project. But the JPEG decoder was not enough, as there are other released socketnodes by TI which are not yet wrapped in gst-dsp, such as, in this case, the AAC decoder.

gst-dsp is a project with only video decoding use case in mind, and audio streams might not be optimally handled by it. The biggest concern was about the memory mapping of small buffers, which could consume more CPU rather than the direct decoding. Nevertheless I decided give it a try.

These last two weeks I devoted them to pull out the dspadec element and it seems to perform quite good without any significant modification in the gst-dsp core. You can find the submitted patches in the gst-dsp mailing list.

These patches are still in review process and perhaps they will not land on the repository, nevertheless, I also updated the marmita’s recipes in order to provide an installable image for the beagleboard, so anybody could test this new element.

Among other candies, this marmita snapshot brings libsoup and the souphttpsrc GStreamer element, besides all the alsa stuff for the audio rendering. Also gdb hit into the tarball.

Enjoy it!

These bytes were brought to you thanks to Igalia, who sponsored this development.