Integration of the Chromium Browser in the GENIVI Platform

Jacobo Aragunde Pérez
blogs.igalia.com/jaragunde
• Open Source experts and consultants
• 15 years of experience
• Important contributions to:
 • Client-side web technologies: WebKit, Blink/Chromium, Servo
 • Graphics & Multimedia: Mesa, GStreamer
 • Compilers: V8, JavaScriptCore, SpiderMonkey, Guile
 • Software-defined networking: Snabb
 • ...
Introduction
Goals of the project

- Integrate full-featured Chromium browser in GDP
 - Use Intel’s Ozone-Wayland project, most complete implementation of Wayland so far
 - Get latest possible version of the browser working

- Analyze and fix multi-seat implementation, if required

- Funding: GENIVI challenge grant and Igalia contributions
Elements and versions

- Chromium: latest stable release was 54 at that point
- Ozone-Wayland: latest branch supports Chromium 53
- Meta-browser: supporting Chromium 48
- GENIVI BSPs
Rebase & integrate Chromium browser
Work on meta-browser

- Simplify configuration
 - Obsolete CHROMIUM_ENABLE_WAYLAND detection
- Build chromium+wayland version 53
 - Recipe was pointing to version 48
 - Required patch backport
- Fix specific build scenarios
 - x86 32 bit, mixed x11+wayland libs
- Contributed to upstream meta-browser project
Integration in GDP

- Integration with HMI: .app and .service files
 - .desktop for GDP12/master
- Force window size to get the proper aspect ratio
- Fix compilation on different platforms: Raspberry Pi 3, R-Car Gen 3
- Backport upstream chromium patch to fix issues with kernel >=4.5 (GDP master)
- Under revision on PR#53 (GDP master)
 - GDP 11 patches available in branch
Current status

- GDP integration under revision on PR#53 (GDP master)
- Supported hardware:
 - Minnowboard: up and running
 - R-Car Gen. 3: up and running
 - Raspberry Pi 3: work in progress
- HMI integration in GDP 12/master
 - Detected some issues in HMI side, hopefully fixed in master
Multi-seat implementation
Analysis

• Check status of multi-seat features in Ozone-Wayland

• Issues found:
 • Keyboard focus can be stolen
 • Only one browser window receives all input events on a multi-seat configuration
Keyboard focus can be stolen

- Underlying cause: no independent keyboard and pointer focus
 - Window with pointer focus also receives keyboard events
- Solution:
 - Split keyboard and pointer focus
 - Modify window focus logic
 - Enable window focus on keyboard events
 - Break assumption of only one focused window
Flow of events in Chromium processes
Multi-seat configuration problems

• Underlying cause: assumption there is only one focused window
 • Focused window receives all events
 • Chromium browser process gathers all events and sends them to the focused window
 • No awareness of the different seats sending events
Parts of the solution

• Input device abstractions must be aware of the seat they belong to
 • Add extra information to internal IPC messages related to events
• Browser process must be aware of the concept of “seat”
 • New IPC signal to sync seat objects between GPU and browser processes
• GPU process must check seat assignment
 • Sync with browser process using a new IPC signal
Current status

- WIP implementation available in branch wip/multi-seat
- Implementation is feature complete
- Requires some additional work & clean-up
- Goal: contribute back to main Ozone-Wayland project
 - Probably required to remove IVI input bits
Next steps
GENIVI future plans

• Short term: hardware support, Raspberry Pi
• CEF on Wayland
 • Will provide a stable API to build upon
 • Will provide API for embedders
• Browser API implementation
 • Start with a small subset of operations
GENIVI future plans

- Integration with GENIVI subsystems:
 - Audio Manager
 - Persistence API
- Longer term: replace Ozone-Wayland
 - Wait until upstream catches up