

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |

 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Jacobo Aragunde Pérez
blogs.igalia.com/jaragunde

LibreOffice
Architecture, accessibility and
QA

Project history

StarWriter 1.0, 1986

(source)

http://www.cpc-power.com/index.php?page=detail&num=4659

Early years (1980s)

● 1985: StarWriter for Z80 micros
● 1986: StarDivision founded in Germany
● Versions for Amstrad/Schneider Computers

● CPC (CP/M operating system)
● PC-1512 (MS-DOS)

(by Bill Bertram, source)

https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg

Consolidation (1990s)

● StarOffice suite created
● Versions for:

● MS-DOS, Windows 3.1, 95, NT (Microsoft, PC)
● OS/2 (IBM PC)
● Classic Mac (Apple)
● Solaris (Sun)
● Linux (PC)

StarOffice 2.0, 1994

(source)

https://commons.wikimedia.org/wiki/File:Starwriter_compact_2.png

StarOffice 2.0, 1994

(source)

http://www.sheim.net/wordpress/computer/mein-software-museum/

StarOffice 5.2, 2000

(source)

http://warmada.staff.ugm.ac.id/Screenshot/staroffice/

Under the Sun (2000s)

● 1999: Sun Microsystems acquires StarDivision for 60M$

● 2000: Branded as OpenOffice, becomes Free Software
● 2002: OpenOffice 1.0
● 2005: OASIS standard, OpenOffice 2.0
● Consolidation as the main Linux office suite

● Friction between Sun and the community

OpenOffice.org 1.0, 2002

(source)

http://www.databook.bz/?page_id=205

OpenOffice.org 2.0, 2005

(source)

http://www.freesoftwaremagazine.com/articles/event_report_october

LibreOffice and TDF (2010-today)

● 2010: Oracle acquires Sun
● Growing discontent in the community
● 2010: birth of LibreOffice and The Document Foundation

● Community led, vendor independent
● 2011: Apache OpenOffice

● Oracle transferred ownership to Apache Foundation

LibreOffice 3.3, 2010

(source)

https://commons.wikimedia.org/wiki/File:LibreOffice_Writer_3.3.png

LibreOffice 4.x, 2013-15

(source)

https://wiki.documentfoundation.org/ReleaseNotes/4.0

LibreOffice 5.x, 2015-17

LibreOffice 6.x, 2018-2020

LibreOffice Online, 2019

LibreOffice 7.x, 2020-

LibreOffice on WebAssembly

Apache OpenOffice 4.1.7, 2019

(source)

https://www.openoffice.org/product/writer.html

The project today

Development figures

● Around 300 weekly commits by 50 different authors
● 9M lines of code
● ~30 years of history

“Exact history was lost before Sept. 18th, 2000,
but old source code comments show that Writer
core dates back until at least November 1990.”

● Still 50000 lines of German code comments when
LibreOffice was forked!
● Bug closed in 2018

https://bugs.documentfoundation.org/show_bug.cgi?id=39468

Stats: German comments

Stats: commits (Dec 19 – Dec 22)

(source)

https://dashboard.documentfoundation.org/

Stats: commits per autor (Dec 19 – Dec 22)

(source)

https://dashboard.documentfoundation.org/

Stats: authors (Dec 19 – Dec 22)

Release calendar

● Release early, release often
● Major release every six months (6.4.0)

● Brings new features
● Minor release ~ every month (6.4.1, etc.)

● Bugfixing only
● End of life: 9 months
● Always two versions coexisting

● Right now: 7.2.4 and 7.1.8

Release calendar

● Example: plan for 6.4
● https://wiki.documentfoundation.org/ReleasePlan

https://wiki.documentfoundation.org/ReleasePlan

Branch model

master

libreoffice-6-4

libreoffice-6-4-0 libreoffice-6-4-1

Week 2 Week 6 Week 9

Organizing a community

● The Document Foundation umbrella
● Owns trademarks
● Collects donations
● Provides services to community
● Organizes events
● Occasionally funds development

Organizing a community

● Communication channels
● Mailing lists
● IRC
● Bug tracker and code review

● Committees and teams
● Engineering Steering Committee
● Design team
● QA team

Organizing a community

● Ultimately, individuals and companies define the
project priorities by providing effort

Current lines of work

● Mobile and cloud versions
● LibreOfficeKit API

● Support more document types
● OOXML, catching up MS Office releases
● Document Liberation Project

● GPU-based rendering
● UX improvements (design team)
● Polish

Architecture

General considerations

● There is not a global, application-wide design
● Document filters: finite-state machine
● VCL (visual components library): modeled after existing UI

frameworks
● Document model: Frame-Controller-Model

Frame-Controller-Model

● Model
● Represents an object from the document

– Text, shapes, spreadsheet cells

● Controller
● Interaction between the screen and the model
● Observes the model
● Manipulates the presentation but not the model

● Frame
● Bidirectional communication between controller and UI
● Hierarchical organization

Other elements

● Component
● Common interface between controller and frame
● A frame can contain several components, which are either controllers

of other frames
● Desktop

● Hierarchy root frame
● Specific interface

Dispatch framework

● Communication interfaces between components and UI
● Commands expressed by a URL
● Implemented in frames and controllers
● Responsibility chain

● Traverse the hierarchy until reaching the one implementing the
command

Other considerations

● Sometimes, interfaces expose the Frame-Controller-Model
architecture but the implementation does not match

● Historical reasons: architecture was engineered over an existing
code base

● Need to provide uniform API

Visual components library

● Abstract UI elements: buttons, menus, etc.
● Each abstract element wraps an actual element of a supported

UI framework
● Several UI frameworks available, enabled in compile time

● GTK+, Windows, OSX

Visual components library

VCL

GTK+

Windows

OS X

VCL

Accessibility framework

Internal
Accessibility
Framework

ATK

IAccessible2

NSAccessibility

Accessibility framework

● Abstract accessible elements: buttons, menus, etc.
● Accessible elements match members of the VCL and wrap

native classes of the a11y framework
● Several frameworks available, enabled in compile time

● ATK (Linux), IAccessible2 (Windows), NSAccessibility (OSX)

Interfaces involved in a11y

An abstract screen reader

Software

Accessibility
implementation

Assistive Technologies
(Screen reader) Inter-process

communication

Screen reader (GNOME)

Software

ATK

Orca

AT-SPI GTK+
ATK

Layers

Screen reader Testing toolsAT
layer

AT-SPI registry (D-BUS)

ATK <-> AT-SPI bridge

LibreOffice ATK implementation

LibreOffice Accessibility framework

LibreOffice core

Platform
layer

Application
layer

Quality assurance

Techniques and tools

● Peer review
● Unit tests
● Continuous integration
● Crashtests
● Static code analysis
● Bug triaging

Regression detection tools
● Manual testing

Peer review

● master branch
● Committers without review, 1 review for others

● libreoffice-6-4 branch:
● Only bugfixing
● +1 review in any case

● libreoffice-6-4-x branches:
● Only patches from 6-4 branch
● +2 reviews

Peer review

master

libreoffice-6-4

libreoffice-6-4-0 libreoffice-6-4-1

Week 2 Week 6 Week 9

Peer review

Unit tests

● Check key elements in documents
● Import
● Import + export + import

● Variable coverage
● Good coverage for new document formats

● No automated UI testing as for now

Continuous integration

● Several machines are periodically compiling LibreOffice
● Daily or several times per day
● Also run unit tests

● Compile patches from code review
● All patches tested before landing

● Different platforms
● All supported platforms and some more (Android, iOS)

● Different compilation options

Continuous integration

Crashtests

● Check crashes when opening and saving documents
● Sample size: 92000 documents

● Most come from bug reports
● Periodicity: weekly

Static code analysis

● Tool Coverity Scan
● Free for open source projects

● Detects: dead code, uninitialized variables, uncaught
exceptions...

● Defect density reduced from 1,1 to ~0
● Density measured in defects every 1000 lines
● Average for similar sized projects: 0,71

Static code analysis

Bug triaging

● Periodically check bugzilla reports
● Confirm bugs
● Detect duplicates
● Prioritize
● Verify patches

Regression detection tools

● Regression: a problem that was not present in previous
versions

● Main tool to fix regressions: bisect
● Binary search of the guilty commit
● Recompilation cycle makes it unfeasible in LibreOffice

● LibreOffice tool: bi-bisect (binary bisect)
● Binary repository from different development stages
● Recompilation not necessary

Manual testing

● List of tests to be manually run
● Tool: MozTrap
● Testing rounds for every pre-release (betas, release candidates)

● “Freestyle” testing
● Bug hunting sessions

¡Thank you!

© 2014-2021 Igalia, S.L.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

