
  

static void
_f_do_barnacle_install_properties(GObjectClass 

*gobject_class)
{

  GParamSpec *pspec;
 

  /* Party code attribute */
  pspec = g_param_spec_uint64 

(F_DO_BARNACLE_CODE,
       "Barnacle code.",
       "Barnacle code",

       0,
       G_MAXUINT64,

       G_MAXUINT64 /* 
default value */,

       G_PARAM_READABLE 
| G_PARAM_WRITABLE | 

       G_PARAM_PRIVATE);

  g_object_class_install_property (gobject_class,
   

F_DO_BARNACLE_PROP_CODE,

Jacobo Aragunde Pérez
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Project history



  

StarWriter 1.0, 1986

(source)

http://www.cpc-power.com/index.php?page=detail&num=4659


  

Early years (1980s)

● 1985: StarWriter for Z80 micros
● 1986: StarDivision founded in Germany
● Versions for Amstrad/Schneider Computers

● CPC (CP/M operating system)
● PC-1512 (MS-DOS)



  
(by Bill Bertram, source)

https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg


  

Consolidation (1990s)

● StarOffice suite created
● Versions for:

● MS-DOS, Windows 3.1, 95, NT (Microsoft, PC)
● OS/2 (IBM PC)
● Classic Mac (Apple)
● Solaris (Sun)
● Linux (PC)



  

StarOffice 2.0, 1994

(source)

https://commons.wikimedia.org/wiki/File:Starwriter_compact_2.png


  

StarOffice 2.0, 1994

(source)

http://www.sheim.net/wordpress/computer/mein-software-museum/


  

StarOffice 5.2, 2000

(source)

http://warmada.staff.ugm.ac.id/Screenshot/staroffice/


  

Under the Sun (2000s)

● 1999: Sun Microsystems acquires StarDivision for 60M$

● 2000: Branded as OpenOffice, becomes Free Software
● 2002: OpenOffice 1.0
● 2005: OASIS standard, OpenOffice 2.0
● Consolidation as the main Linux office suite

● Friction between Sun and the community



  

OpenOffice.org 1.0, 2002

(source)

http://www.databook.bz/?page_id=205


  

OpenOffice.org 2.0, 2005

(source)

http://www.freesoftwaremagazine.com/articles/event_report_october


  

LibreOffice and TDF (2010-today)

● 2010: Oracle acquires Sun
● Growing discontent in the community
● 2010: birth of LibreOffice and The Document Foundation

● Community led, vendor independent
● 2011: Apache OpenOffice

● Oracle transferred ownership to Apache Foundation



  

LibreOffice 3.3, 2010

(source)

https://commons.wikimedia.org/wiki/File:LibreOffice_Writer_3.3.png


  

LibreOffice 4.x, 2013-15

(source)

https://wiki.documentfoundation.org/ReleaseNotes/4.0


  

LibreOffice 5.x, 2015-17



  

LibreOffice 6.x, 2018-2020



  

LibreOffice Online, 2019



  

LibreOffice 7.x, 2020-



  

LibreOffice on WebAssembly



  

Apache OpenOffice 4.1.7, 2019

(source)

https://www.openoffice.org/product/writer.html


  

The project today



  

Development figures

● Around 300 weekly commits by 50 different authors
● 9M lines of code
● ~30 years of history

“Exact history was lost before Sept. 18th, 2000, 
but old source code comments show that Writer 
core dates back until at least November 1990.”

● Still 50000 lines of German code comments when 
LibreOffice was forked!
● Bug closed in 2018

https://bugs.documentfoundation.org/show_bug.cgi?id=39468


  

Stats: German comments



  

Stats: commits (Dec 19 – Dec 22)

(source)

https://dashboard.documentfoundation.org/


  

Stats: commits per autor (Dec 19 – Dec 22)

(source)

https://dashboard.documentfoundation.org/


  

Stats: authors (Dec 19 – Dec 22)



  

Release calendar

● Release early, release often
● Major release every six months (6.4.0)

● Brings new features
● Minor release ~ every month (6.4.1, etc.)

● Bugfixing only
● End of life: 9 months
● Always two versions coexisting

● Right now: 7.2.4 and 7.1.8



  

Release calendar

● Example: plan for 6.4
● https://wiki.documentfoundation.org/ReleasePlan

https://wiki.documentfoundation.org/ReleasePlan


  

Branch model

master

libreoffice-6-4

libreoffice-6-4-0 libreoffice-6-4-1

Week 2 Week 6 Week 9



  

Organizing a community

● The Document Foundation umbrella
● Owns trademarks
● Collects donations
● Provides services to community
● Organizes events
● Occasionally funds development



  

Organizing a community

● Communication channels
● Mailing lists
● IRC
● Bug tracker and code review

● Committees and teams
● Engineering Steering Committee
● Design team
● QA team



  

Organizing a community

● Ultimately, individuals and companies define the 
project priorities by providing effort



  

Current lines of work

● Mobile and cloud versions
● LibreOfficeKit API

● Support more document types
● OOXML, catching up MS Office releases
● Document Liberation Project

● GPU-based rendering
● UX improvements (design team)
● Polish



  

Architecture



  

General considerations

● There is not a global, application-wide design
● Document filters: finite-state machine
● VCL (visual components library): modeled after existing UI 

frameworks
● Document model: Frame-Controller-Model



  

Frame-Controller-Model

● Model
● Represents an object from the document

– Text, shapes, spreadsheet cells

● Controller
● Interaction between the screen and the model
● Observes the model
● Manipulates the presentation but not the model

● Frame
● Bidirectional communication between controller and UI
● Hierarchical organization



  

Other elements

● Component
● Common interface between controller and frame
● A frame can contain several components, which are either controllers 

of other frames
● Desktop

● Hierarchy root frame
● Specific interface



  

Dispatch framework

● Communication interfaces between components and UI
● Commands expressed by a URL
● Implemented in frames and controllers
● Responsibility chain

● Traverse the hierarchy until reaching the one implementing the 
command



  

Other considerations

● Sometimes, interfaces expose the Frame-Controller-Model 
architecture but the implementation does not match

● Historical reasons: architecture was engineered over an existing 
code base

● Need to provide uniform API



  

Visual components library

● Abstract UI elements: buttons, menus, etc.
● Each abstract element wraps an actual element of a supported 

UI framework
● Several UI frameworks available, enabled in compile time

● GTK+, Windows, OSX



  

Visual components library

VCL

GTK+

Windows

OS X



  

VCL

Accessibility framework

Internal
Accessibility
Framework

ATK

IAccessible2

NSAccessibility



  

Accessibility framework

● Abstract accessible elements: buttons, menus, etc.
● Accessible elements match members of the VCL and wrap 

native classes of the a11y framework
● Several frameworks available, enabled in compile time

● ATK (Linux), IAccessible2 (Windows), NSAccessibility (OSX)



  

Interfaces involved in a11y



  

An abstract screen reader

Software

Accessibility
implementation

Assistive Technologies
(Screen reader) Inter-process

communication



  

Screen reader (GNOME)

Software

ATK

Orca

AT-SPI GTK+
ATK



  

Layers

Screen reader Testing toolsAT 
layer

AT-SPI registry (D-BUS)

ATK <-> AT-SPI bridge

LibreOffice ATK implementation

LibreOffice Accessibility framework

LibreOffice core

Platform 
layer

Application 
layer



  

Quality assurance



  

Techniques and tools

● Peer review
● Unit tests
● Continuous integration
● Crashtests
● Static code analysis
● Bug triaging

Regression detection tools
● Manual testing



  

Peer review

● master branch
● Committers without review, 1 review for others

● libreoffice-6-4 branch:
● Only bugfixing
● +1 review in any case

● libreoffice-6-4-x branches:
● Only patches from 6-4 branch
● +2 reviews



  

Peer review

master

libreoffice-6-4

libreoffice-6-4-0 libreoffice-6-4-1

Week 2 Week 6 Week 9



  

Peer review



  

Unit tests

● Check key elements in documents
● Import
● Import + export + import

● Variable coverage
● Good coverage for new document formats

● No automated UI testing as for now



  

Continuous integration

● Several machines are periodically compiling LibreOffice
● Daily or several times per day
● Also run unit tests

● Compile patches from code review
● All patches tested before landing

● Different platforms
● All supported platforms and some more (Android, iOS)

● Different compilation options



  

Continuous integration



  

Crashtests

● Check crashes when opening and saving documents
● Sample size: 92000 documents

● Most come from bug reports
● Periodicity: weekly



  

Static code analysis

● Tool Coverity Scan
● Free for open source projects

● Detects: dead code, uninitialized variables, uncaught 
exceptions...

● Defect density reduced from 1,1 to ~0
● Density measured in defects every 1000 lines
● Average for similar sized projects: 0,71



  

Static code analysis



  

Bug triaging

● Periodically check bugzilla reports
● Confirm bugs
● Detect duplicates
● Prioritize
● Verify patches



  

Regression detection tools

● Regression: a problem that was not present in previous 
versions

● Main tool to fix regressions: bisect
● Binary search of the guilty commit
● Recompilation cycle makes it unfeasible in LibreOffice

● LibreOffice tool: bi-bisect (binary bisect)
● Binary repository from different development stages
● Recompilation not necessary



  

Manual testing

● List of tests to be manually run
● Tool: MozTrap
● Testing rounds for every pre-release (betas, release candidates)

● “Freestyle” testing
● Bug hunting sessions



  

¡Thank you!

© 2014-2021 Igalia, S.L.

http://creativecommons.org/licenses/by-sa/3.0/legalcode
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