
Building a Browser for
Automotive: Alternatives,

Challenges and
Recommendations

Igalia and Webkit/Chromium

Open source consultancy founded in 2001

Igalia is Top 5 contributor to upstream
WebKit/Chromium

Working with many industry actors: automotive, tablets,
 phones, smart tv, set-top boxes, IVI and home
automation

1

2

3

1

2

3

A browser for automotive: requirements and alternatives

WebKit and Chromium, a historical perspective

Selecting between WebKit and Chromium based
alternatives

Outline

PART 1
A browser for automotive:

requirements and alternatives

Requirements

Different User Experiences:
 UI modifications (flexibility)
 New ways of interacting: accessibility support

Support of specific standards (mostly communication and
interfaces)

Portability: support of specific hardware boards
(performance optimization)

Functionality and completeness can be less demanding in
some cases (for now)

Provide both browser as an application and as a runtime

Available alternatives

Option 1) Licensing a proprietary solution: might bring a
reduced time-to-market but involves cost-per-unit and
lack of flexibility

Option 2) Deriving a new browser from the main open
source browser technologies:
 Firefox (Gecko)
 Chromium
 WebKit (Safari and others)

Mozilla removed support in their engine for third party
browser developers, so the two available choices are
Chromium and WebKit (with various options for each of
them)

Understanding the main alternatives

When creating a new open source browser for
automotive, a decision between Chromium and WebKit
will need to be made

Chromium and Webkit share a lot of history, design
and code

Learning how WebKit was created, and how
Chromium emerged and derived from WebKit,
improves the understanding of the pros and cons of
each solution

We will make a detailed historical review of both
projects

PART 2
WebKit and Chromium:
A historical perspective

PART 2.1: 2004-2013

WebKit, the first 9 years

The WebKit project

Web rendering engine (HTML, JavaScript, CSS...)

 → The engine is the product

Started as a fork of KHTML and KJS in 2001

Open Source since 2005

Among other things, it’s useful for:

Web browsers

Using web technologies for UI development

WebKit Architecture

From a simplified point of view, WebKit is structured this way:

WebKit: thin layer to link against
from the applications

WebCore: rendering, layout,
network access, multimedia,
accessibility support...

JS Engine: the JavaScript engine.
JavaScriptCore by default.

platform: platform-specific hooks to
implement generic algorithms

Architecture of a WebKit port

Architecture of a WebKit port

The WebView widget:

A platform-specific widget that renders web content. It’s
the main component and it’s useful for:

Loading URIs or data buffers pointing to HTML content
Go fullscreen, text/text+image zooming...
Navigate back and forward through history...

Events handling:
Allows embedders to get notified when something
important happens or when some input is needed.

Some examples of these events:
Getting notified when a load finished or failed
Asking permission for navigating to an URI
Requesting authorization for something.

How do we use a WebKit port?

WebKit ports

WebKit is available for different platforms:

Main upstream ports in 2012/2013:
Mac OS X, iOS
GTK+ based platforms (GNOME)
Qt based platforms (KDE)
Enlightenment Foundation Libraries (EFL, Tizen)
Google Chromium / Chrome
WebKitNIX

Other ports: wxWidgets, Brew MP, Symbian devices (S60),
Win32, BlackBerry, Adobe Integrated Runtime (Adobe AIR)

Some WebKit-based browsers in 2013

Safari

Kindle

RockMelt

PS3

NintendoDS

WebOS

Epiphany

Google Chrome

iCab

Iris Browser

Konqueror

Midori

BOLT browser

OWB

OmniWeb

SRWare Iron

Shiira

Sputnik (MorphOS)

Stainless

Steel for Android

TeaShark

Uzbl

Web browser for
S60(Nokia)

What is WebKit2?

New API layer designed to support a split process
model (First release by Apple on April 8th, 2011).

Different to Chromium’s multi-process implementation

It’s bundled in the framework (reusable)

Different processes take care of different tasks:
UI process: the WebView widget, application UI
Web process: loading, parsing, rendering, layout...
Plugin process: each plugin type in a process

It comes with Inter-Process Communication (IPC)
mechanisms to communicate those processes bundled-
in

http://trac.webkit.org/wiki/WebKit2

http://trac.webkit.org/wiki/WebKit2

WebKit VS WebKit2

Advantages: isolation, security, performance, stability.

WebKit2 VS Chromium

WebKit2 VS Chromium

Content API

The Source Code in numbers

Lines of code per language, without considering blank
lines or comments (May 3rd, 2015):

https://www.ohloh.net/p/WebKit/analyses/latest/language_summary

Just considering C++, Objective-C and C >1.6M LoC!

Language LoC %
HTML 1,955,561 32.4 %
C++ 1,308,667 27.5 %

JavaScript 962,086 20.8 %
Objective-C 175,669 3.4 %

XML 158,555 2.5 %
C 121,951 3.0 %

PHP 100,345 2.3 %
CSS 93,247 1.6 %

Python 78,348 1.9 %
Perl 76,491 1.7 %

OpenGL
Shad

52,234 1.8 %

Other (16) 50,000 1.1 %
Total 4,132,955

https://www.ohloh.net/p/WebKit/analyses/latest/language_summary

The WebKit Project in numbers

Commits per month till 2013:

The WebKit Project in numbers

Contributors per month::

Activity of Companies by 2013

Figure : Commits per company
(monthly)

Activity of Companies by 2013

Figure : Active authors per company
(monthly)

Part 2.2

The creation of Blink

(April 2013)

Google’s Departure. Blink

Google announced on April 3rd that they would be
forking WebKit and creating Blink

Motivations according to Google:
 They were not using WebKit2 anyway
 Easier to do ambitious architectural changes after the fork
 Simplification of the codebase in Blink

Tension between Apple and Google before the fork
 Architectural decisions: Network Process
 Code governance: Owners need to approve some core changes

Big shock within the WebKit community

Differences between WebKit and Blink

Removes the concept of ’port’ as it was defined in WebKit
 (deep platform integration): Skia, V8 and other libraries
cannot be replaced

Still possible to use Blink in other platforms, but now
 integration happens at Content level

Only the rendering engine. Multi-process architecture is
still in Chromium

WebKit has committers, reviewers and owners (control
some core areas). Blink only committers and owners
(similar to WebKit reviewers)

Peer review process a bit more relaxed in Blink

Many architectural changes

Early consequences of the fork

Google was the main contributor by # of commits.
Apple’s position now more dominant

Opera joined WebKit then moved to Blink. Other
companies and communities started migrating (Tizen and
 Qt)

Several WebCore modules left orphan. Other hackers
 assuming WebCore modules maintainership

WebKit developers porting patches from/to Blink

Many hacks to accommodate Chromium removed.
Engines quickly starting to diverge at faster pace

Impact of Blink in numbers

Contributors per month in WebKit:

Impact of Blink in numbers

Commits per month in WebKit:

Impact of Blink in numbers

Commits per month in 2013-2014, Blink:

Commits per month in 2013-2014, WebKit:

Webkit and Chromium in 2015

Less shared energy because of the split, but both projects
very active and alive

There is a recent trend towards more users for Blink and
Chromium, but still quite a lot of open questions and
challenges

Both provide good building blocks for creating a browser
for automotive

PART 3

Selecting the best alternative

Alternatives today

In WebKit you need to select (or create) a port,
in Chromium you need to define how you would like to use it.

WebKit:
WebKitGTK+
WebKit for Wayland
WebKitEFL and QtWebkit (mostly legacy projects)

Chromium:
Chromium directly
QtWebEngine
Crosswalk
Chromium Embedded Framework (CEF)

Webkit vs Chromium: pros and cons

WebKit:
Pro: memory footprint is smaller
Pro: ports are upstream, easy to integrate core changes
Pro: very flexible architecture, easy to plug components
Con: less companies contributing (Apple very relevant)
Con: less innovation lately in some areas of the codebase

Chromium:
Pro: more innovation happening in some areas, Google
driving it with a lot of developers
Pro: trend of more and more companies trying the
technology and testing it
Con: no concept of ports
Con: difficult to contribute to some core areas (Google)
Con: versions of Chromium diverting a lot from Chrome

WebKitGTK+ and WebKit for Wayland

Pure open source projects, easy to influence their upstream
development

Reliable and well-known release process and quality
maintenance procedures, strong API compatibility

Possibility of modifying the whole stack, avoiding a big
delta (e.g. gstreamer vs other media frameworks)

Developed by a relatively small team (compared to
Google’s Chromium)

Less widely tested in heterogeneous hardware platforms

Webkit for Wayland brings an interesting alternative to
WebKitGTK+ for some use cases, but still not a mature
project

Chromium directly

All the features of the browser at the cost of increased
maintenance complexity

Browsing operations implemented interfacing Chromium’s
Content API. Browser services like history, bookmarks or
incognito should be interfaced directly through internal
(unstable) APIs

High risk of ending with a big delta compared to upstream
Chromium (it moves very fast)

Chromium is officially supported on Intel-based Windows, Mac
OS X and Linux with X11. Building on top of ARM devices
is possible but less directly supported

WebKit2 VS Chromium

Content API

Chromium Embedded Framework

Stable API for development of applications with
embedded browsers

All browser abstractions are preserved, and the multiprocess
architecture of Chromium is preserved and properly interfaced

Browser features from layers above the Content API are not present
in CEF (history, bookmarks or incognito)

Officially supported only on Intel-based Windows, Mac OS X
and Linux with X11

Created in 2009. Still mostly a one person project

Crosswalk

Crosswalk is an HTML application runtime based on
Chromium. It is available for Android as an embeddable
webview container and for Tizen as the system-wide
application runtime

Crosswalk reuses and adapts the multiprocess model of
Chromium to its needs

Crosswalk usage as a webview for Android difficult to port as it
is mostly implemented in Java.

Crosswalk is intended to run applications and not web pages.
Building a browser on top requires creating a quite big delta with
upstream

Still a quite new project (created in 2013). Not a big
community outside Intel and Tizen

QtWebEngine

Evolution of the Qt webkit port, but using Chromium

It was undergoing heavy development until very recently

Some small open source browsers use it but not focused on
being used for browsers, just for embedding small HTML5
parts in Qt 5 applications

Potential issues with LGPLv3 license for some users.

Conclusions

There are various alternatives both in WebKit and Chromium
to create a derived browser for the automotive use

Different companies and projects are using different
solutions. There is none that seems to be good at
everything

The choice largely depends on the weight of the different goals
to be achieved with that project and its specific hardware and
software needs

In any case, and independently from the choice, 3 keys for
success:

Long term analysis of hardware and software requirements
In line with the community and open source dynamics
(minimum delta, as much upstream as possible)
Right team and project scope definition

Thank you!

Mi Sun Silvia Cho
 mscho@igalia.com

mailto:mscho@igalia.com

	Slide 1
	Myself, Igalia and Webkit/Chromium
	Slide 3
	Slide 4
	Requirements
	Available alternatives
	Slide 7
	Slide 8
	Slide 9
	The WebKit project
	WebKit Architecture
	Architecture of a WebKit port
	Architecture of a WebKit port
	Slide 14
	How many WebKit ports are there?
	Some WebKit based browsers in 2013
	What is WebKit2?
	WebKit VS WebKit2
	WebKit2 VS Chromium
	Slide 20
	The Source Code in numbers
	The WebKit Project in numbers
	Slide 23
	Activity of Companies by 2013
	Activity of Companies by 2013
	Slide 26
	Google’s Departure. Blink
	Differences between WebKit and Blink
	Slide 29
	Slide 30
	Impact of Blink in numbers
	Impact of Blink in numbers
	Webkit and Chromium in 2015
	Slide 34
	Alternatives today
	Webkit vs Chromium: pros and cons
	WebKitGTK+ and WebKit for Wayland
	Chromium directly
	Slide 39
	Slide 40
	Crosswalk
	QtWebEngine
	Conclusions
	Thank you!

