static void perties(GObjectClass gobject_class)*

Spec *pspec;

LibreOffice Architecture, accessibility and QA

Jacobo Aragunde Pérez

blogs.igalia.com/jaragunde

Project history

Some history

- 1985: StarWriter for Z80 micros
- 1986: StarDivision founded, StarOffice
- 1999: Sun Microsystems acquires StarDivision

StarWriter 1.0, 1986

		Sinak-Akutisk II Bi=Dumny Text			
F1=Bearbeiten	F2=Anzeigen	<u>F3=Dummy Text</u>	F4=Drucken	F5=Disc	F8=Exit
INSTALL WRITER :001	Lauf NRITER .COM NRITER .802	MENUE .	frei LAYOUT ZEICHEN :	WRIT	ER .000
HALLEN .001	WALLEN .005	nvrr .	SETCHEN .		

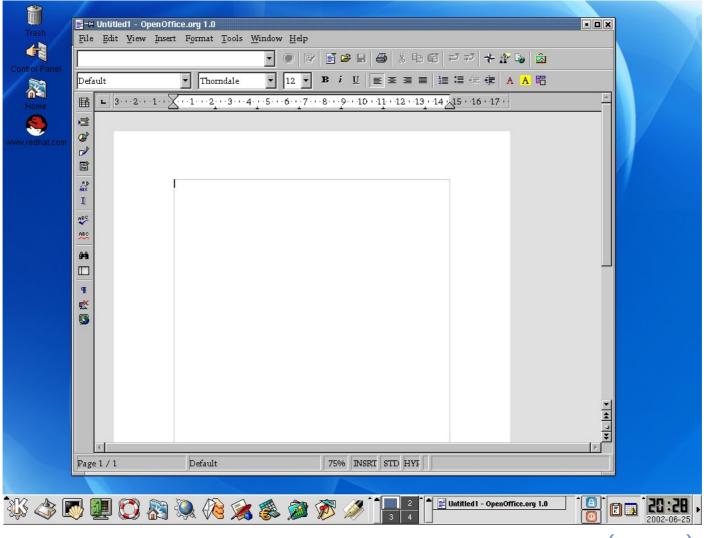
StarOffice 2.0, 1994

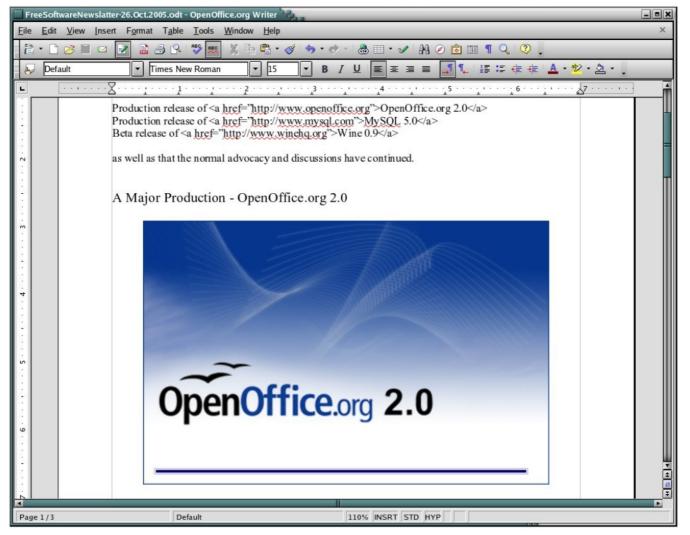
		(C) STAR DIVIS		<u>?</u>
Datei Bearbeiten Ansicht	Einfügen F	ormat Extras	Zusätze	Hilfe
Schrift: <u>Courier</u>	<u></u> <u></u> <u>12</u> F	<u>'t </u> <u>∎</u> <u>F</u> <u>K</u>	<u>U</u> <u>B1</u>	Li Ze Re
		Compact	Sonder;	
Copyr G Teile sind (C) I	right 1993 b	ei STAR DIVISI		ytics
Grafikfilter : Joachim Installation : Andreas Druckmodul : Florian Grafiktext : Ralf Fei Dateidruck : Sven Hann Preview : Ralf Hoff Formeleditor : Bernd Gro Hilfetexte : Jürgen Ho Editor, MinWin	Brostmeyer Däumling land nover mann Dos Dchstädt n & Programm	SAA & Setup Druckkonzept Dateimanager Koordination Hilfe Bausteine Handbuch Textfilter ngestaltung: Sv	: Andreas : Norbert : Lars Ri : Hans-Ch : Hans He : Daniel : Jörg Te	: Jungmann emenschneider m. Rübcke enning Schulz Sillescu egeder
F.				
Hilfe zu Menüpunkten				r Menü mit <f10></f10>

StarOffice 2.0, 1994

StarWriter 2.0 Compact - [Unbenannt1]	• •
<u>Datei Bearbeiten Ansicht Einfügen Format Extras Fenst</u>	ter <u>H</u> ilfe 🔷
	#\$ <u>€</u> #8;
Standard 🛨 Times New Rom 🛨 12 🛨 F K U 🚥 🔳	
-3 1-2 1-1 10 11 12 13 14 15 16 17 18 T T T T T T T T	
	Automatisch Gegenüberstellung Grußformel Marginalie Standard Textkörper Textkörper Einrückung Textkörper Einzug Textkörper Einzug negativ Überschrift Überschrift 1 Überschrift 2 Überschrift 3 Überschrift 5 Unterschrift 5 Unterschrift
	<u>.</u>
Seite 1 / 1 Standard 100% EINFG 05.08.2001	05:11

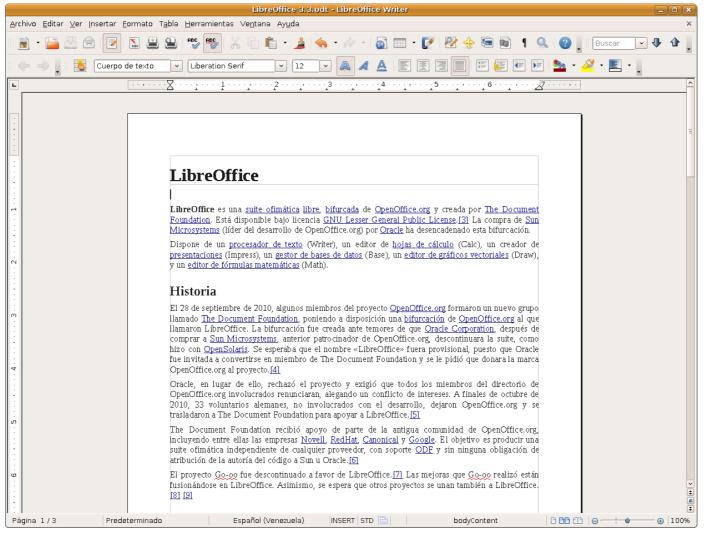
StarOffice 5.2, 2000

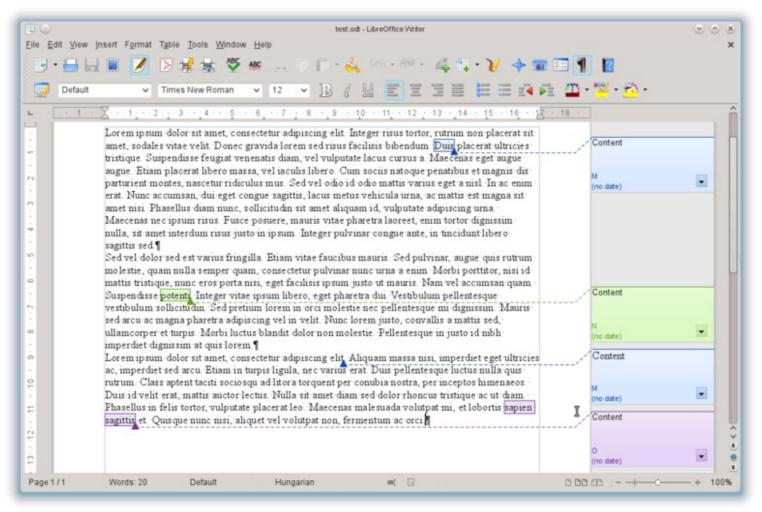

8 8 3 1 2 3 4 4 5 6 7 8 9 12 11 12 13 14 15 16 12 12	 Kupfer Erzminerale Chalkopyrit CuFeS₂ 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu₂AsS₄ 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO₂ 72 4 Bauwurdig sind kleinere Kupferlagenstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallungische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 						P	
 Kupfer Erzminerale Chalkopyrit CuFeS₂ 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu₂AsS₄ 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallungische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+5n; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite	 Kupfer Erzminerale Chalkopyrit CuFeS₂ 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu₂AsS₄ 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallungische und elektrochemische Methoden zum Kachodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+5n; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite	-		been 1 been	BIUEE	通言 語言 · · · · · · · · · · · · · · · · · ·	A 8	_
 Kupfer Erzminerale Chalkopyrit CuFeS, 34,5% Cu D=4,2-4,3 Chalkosin Cu S 80 5,7-5,8 Enargit Cu AsS. 48 4,4 Digenit Cu S 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu O 89 6,2 Malachit Cu (OH):CO, 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite	 Kupfer Erzminerale Chalkopyrit CuFeS, 34,5% Cu D=4,2-4,3 Chalkosin Cu S 80 5,7-5,8 Enargit Cu AsS. 48 4,4 Digenit Cu S 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu O 89 6,2 Malachit Cu (OH):CO, 72 4 Bauwurdig sind kleinere Kupferlagenstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite		X · · · 1 · · · 2 · · ·	3.1.4	·7·L·8···9··	10 11 12 13 14	· 15 · 16 · 17	.t.
 Kupfer Erzminerale Chalkopyrit CuFeS: 34,5% Cu D=4,2-4,3 Chalkosin CuS 80 5,7-5,8 Enargit Cu AsS. 48 4,4 Digenit Cu S; 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu O 89 6,2 Malachit Cub(OH): CO; 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Kupfer Erzminerale Chalkopyrit CuFeS: 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu AsS. 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO: 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite	2						
 <u>Erzminerale</u> <u>Erzminerale</u> <u>Chalkopyrit</u> QuFeS₂ <u>Chalkosin</u> QuS <u>Ru S</u> <l< td=""><td> Erzminerale Erzminerale Chalkopyrit CuFeS₂ 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu₂AsS₄ 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kattodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite </td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	 Erzminerale Erzminerale Chalkopyrit CuFeS₂ 34,5% Cu D=4,2-4,3 Chalkosin Cu₂S 80 5,7-5,8 Enargit Cu₂AsS₄ 48 4,4 Digenit Cu₂S₅ 78 5,7-5,8 Covellin CuS 66 4,7 Cuprit Cu₂O 89 6,2 Malachit Cu₂(OH):CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kattodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	3						
 Erzminerale Chalkopyrit QuFeS₂ 34,5% Qu D=4,2-4,3 Chalkosin Qu S 80 5,7-5,8 Enargit Qu As Si 48 4,4 Digenit Qu S₅ 78 5,7-5,8 Covellin Qu S 66 4,7 Quprit Qu O 89 6,2 Malachit Qu (OH) CO 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kachodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Erzminerale Chalkopyrit QuFeS₂ 34,5% Qu D=4,2-4,3 Chalkosin QuS 80 5,7-5,8 Enargit QuAsS₄ 48 4,4 Digenit QuS₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit QuO 89 6,2 Malachit Qu₂(OH)₂CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	1	Kunfer					
 Chalkopyrit QuFeS₂ 34,5% Qu D=4,2-4,3 Chalkosin Qu₂S 80 5,7-5,8 Enargit Qu₂S₅ 78 5,7-5,8 Enargit Qu₂S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu₂O 89 6,2 Malachit Qu₂(OH)₂CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kadhodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Chalkopyrit QuFeS₂ 34,5% Qu D=4,2-4,3 Chalkosin Qu₂S 80 5,7-5,8 Enargit Qu₂S₅ 78 5,7-5,8 Enargit Qu₂S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu₂O 89 6,2 Malachit Qu₂(OH)₂CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kadhodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	2						
 Chalkosin Qu, S 80 5,7-5,8 Enargit Qu, As Su 48 4,4 Digenit Qu, Su 78 5,7-5,8 Covellin Qu S 66 4,7 Quprit Qu, O 89 6,2 Malachit Qu, (OH), CO, 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Chalkosin Qu, S 80 5,7-5,8 Enargit Qu, As Su 48 4,4 Digenit Qu, Su 78 5,7-5,8 Covellin Qu S 66 4,7 Quprit Qu, O 89 6,2 Malachit Qu, (OH), CO, 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden. Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Qu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	*		CuFeS	34 5% (1)	D-42-43		
 Enargit Qu AsSi 48 4,4 Digenit Qu S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu O 89 6,2 Malachit Qu (OH):CO: 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Enargit Qu AsSi 48 4,4 Digenit Qu S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu O 89 6,2 Malachit Qu (OH):CO: 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 							
 Digenit Qu S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu O 89 6,2 Malachit Qu (OH); CO: 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Digenit Qu S₅ 78 5,7-5,8 Covellin QuS 66 4,7 Quprit Qu O 89 6,2 Malachit Qu (OH); CO: 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Qu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 				10.00			
 Covellin CuS 66 4,7 Cuprit Cu_bO 89 6,2 Malachit Cu_b(OH)₂CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3–5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Covellin CuS 66 4,7 Cuprit Cu_bO 89 6,2 Malachit Cu_b(OH)₂CO₂ 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3–5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	-						
 Malachit Qu_b(OH):CO, 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Malachit Qu_b(OH):CO, 72 4 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 			CuS	66			
 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kadhodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Cu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kadhodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 		Cuprit	CueO		6,2		
 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	 Bauwurdig sind kleinere Kupferlagerstätten bei Gehalten von 3-5% im Erz, während sehr große. Im Tagbau gewinnbare Erzkörper ab 0,5%, bei Vorliegen weitere Metalle (Mo, Au, etc.) sogar ab 0,3 abgebaut werden.Sulfidische Kupfererze werden in der Regel durch Flotation zu Konzentraten mit 30 bis 60% Qu angereichert; diese werden durch metallurgische und elektrochemische Methoden zum Kathodenkupfer verarbeitet. Die Verwendung von Kupfer ist durch di hohe Leitfähigkeit des Metalles für Wärme und Elektrizität geprägt, so dass über 50% des Verbrauches diverse Produkte der Elektroindustrie betreffen. Weiter findet das Metall und seine Legierungen (Bronzen: Cu+Sn; Messing; Cu+Zn) durch günstige mechanische Eigenschaften sowie Verwitterungsbeständigkeit eine breite 	20	Malachit	Cub (OH) CO	72	4		
		100	ab 0,3 abge Konzentraten elektrochemis	baut werden.Sulfidisc mit 30 bis 60% (sche Methoden zum K lung von Kupfer ist	he Kupfererze w Lu angereichert; athodenkupfer ver durch di hohe L	verden in der Regel dur diese werden durch me arbeitet. eitfähigkeit des Metalles	ch Flotation zu tallurgische und für Wärme und	


Some history

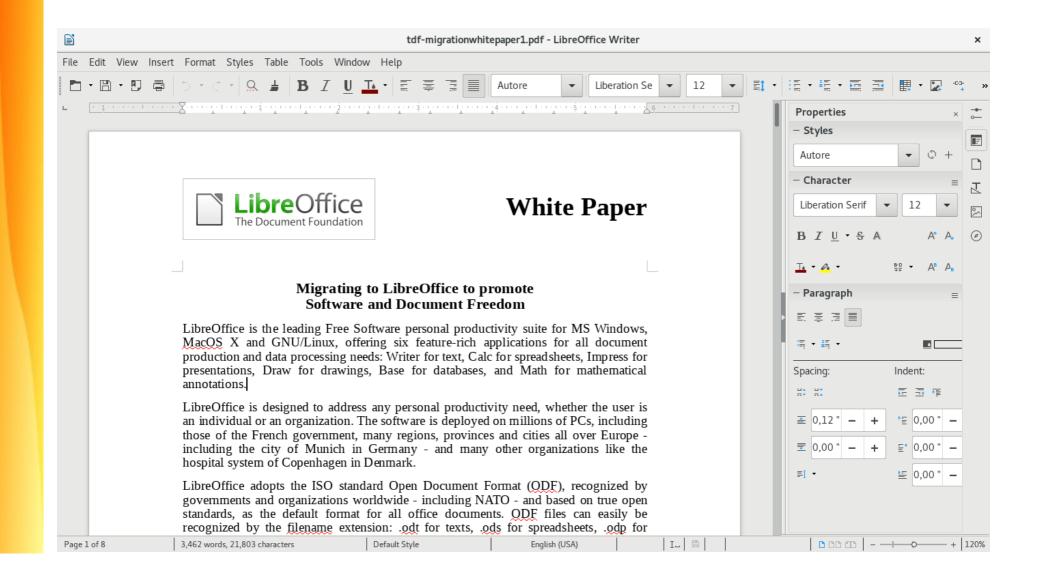
- 2000: OpenOffice becomes Free Software
- 2002: OpenOffice 1.0
- 2005: OASIS standard, OpenOffice 2.0

OpenOffice.org 1.0, 2002


OpenOffice.org 2.0, 2005


Some history

- 2010: Oracle acquires Sun
- 2010: LibreOffice and The Document Foundation
- 2011: Apache OpenOffice


LibreOffice 3.3, 2010

LibreOffice 4.x, 2013-15

LibreOffice 5.x, 2015-17

LibreOffice 6.x, 2018-

r	tdf-migrationwhitepaper1.pdf - LibreOffice Writer					×
	File Home	Insert Layout	References	Review View	Tools	≡
E Cut I Clone Paste □ Copy I Cloar	[12 ▼ A* A, 특・E ▼ ▲ • L • A, A* 톤 Ξ Ξ Ξ		Image: Autore ▼ O A H₁ H₂ H₃ H₄ E	Jable ▼ Ø Zoom S Image P Ω ▼	Home 🔻
L		LibreOffice	<u>.</u>	White Pape		
		0 0	o LibreOffice to nd Document F	-		
	Mac proc pres	reOffice is the leading Free Soft COS X and GNU/Linux, offeri duction and data processing need sentations, Draw for drawings, otations.	ng six feature-rich s: Writer for text, C	applications for all docume alc for spreadsheets, Impress f	for	
	an ii thos inclu	reOffice is designed to address ndividual or an organization. Th se of the French government, m uding the city of Munich in C pital system of Copenhagen in D	e software is deploy any regions, provin Germany - and mar	ed on millions of PCs, includi ces and cities all over Europe	ng e -	
	gov stan reco	reOffice adopts the ISO standa ernments and organizations wor dards, as the default format for ognized by the filename extens sentations, .odg for drawings, .od	dwide - including l or all office docum on: .odt for texts,	NATO - and based on true op nents. ODF files can easily .ods for spreadsheets, .odp f	en be for	
	stan be c PDF the	reOffice allows to save documer dard PDF file which embeds a ppened by LibreOffice users as r F files (the recipients will get per document in LibreOffice if nece ument <u>interoperability</u> , which is	ully editable QDF of formal QDF docum fect formatting whe ssary). This represe	locument. These documents c ents, and by other users as pla n reading-only, but still can e nts a significant improvement	an iin dit	
		reOffice provides shortcuts to se nats: <u>QDF</u> , PDF (including Hybr				
Page 1 of 8 3,462 v	words, 21,803 characters	Default Style	English (USA)		<u> </u>	-0

LibreOffice Online, 2019

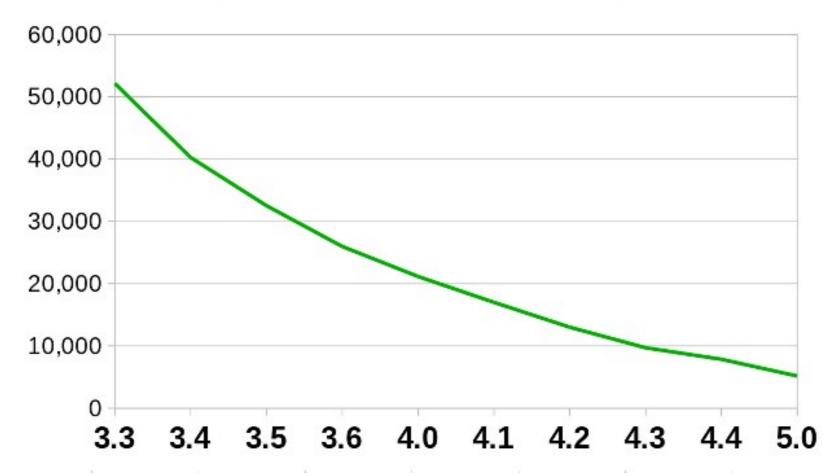
🗠 example.odt - Archivos - 🗙 🕂			×
(←) → ⊂' @ ① ●		⊌ ☆	👱 III\ 🗉 🐵 👫 👀 🖽 😻 😑
•○• ■ ⊠			< e 🕕
Archivo Editar Ver Insertar Forma	to Tabla Herramientas Ayuda <u>Última modificación: hace 4 años</u> exa	ample.odt	×
🔚 🖶 🥎 🦂 🎸 🗛 100% 🕶 🛛 Default Sty	e • Times New Roman • 12 • B I U - + A Aa • • •		≝□□■∗⊠∗⊪○∗∰Ω ∧
	 ownCloud Example Document Welcome to ownCloud, your self-hosted file sync and so OwnCloud is open source file sync and share software for everoperating the free Community Edition, to large enterprises an ownCloud Enterprise Edition. ownCloud provides a safe, securishare solution on servers you control. With ownCloud you can share one or more folders on your PC ownCloud server. Place files in your local shared directories, synced to the server, and then to other PCs via the desktop of client? No problem, simply log in with the web client and ma Android and iOS mobile apps allow you to browse, download On Android, you may also create, download, edit and upload correct software installed. Whether using a mobile device, a workstation, or a web client ability to put the right files in the right hands at the right tim to-use, secure, private and controlled solution. After all, with ownCloud, it's Your Cloud, Your Data, Your Way. 	share solution. eryone from individuals nd service providers operating ure and compliant file sync and C, and sync them with your and those files are immediately client. Not near a desktop nage your files there. The and upload photos and videos. any other files, with the ant, ownCloud provides the e on any device in one simple-	
Buscar: Página 1 de 1 204 p	alabras, 1.239 caracteres Insertar Selección estándar Alemán (Alemania)		🕹 2 usuarios 🔻 🔿 🗸 🔍 🔍 — 100% 🕂

Apache OpenOffice 4.1.7, 2019

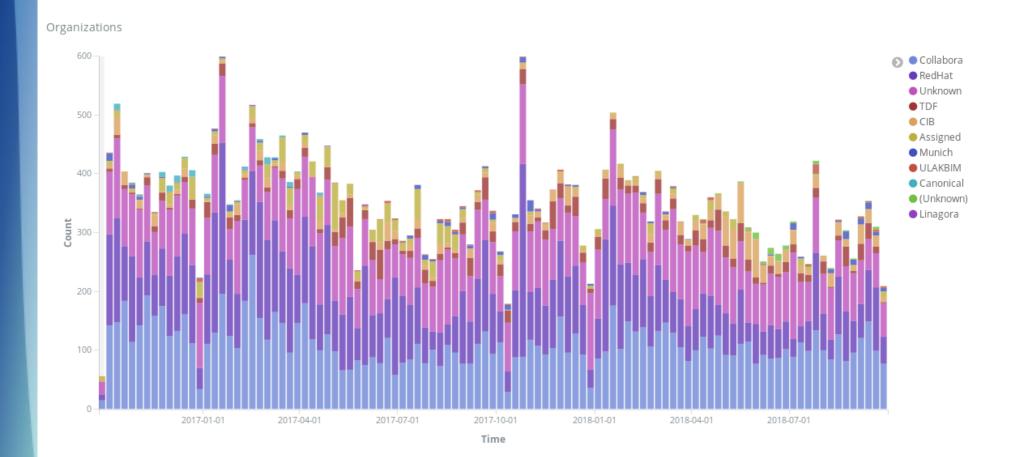
File faith Yeew Procett Fayment Table Look Window Help x Image: State in the St	2	My Resume.odt - OpenOffice Writer						
Vertice v or certificat Stab Vertice V Vertice Vert	<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat T <u>a</u> ble <u>T</u> ools <u>W</u> indow <u>H</u>	<u>H</u> elp			×		
Image: Second Secon	i 🖻 • 🔀 • 🖃	👒 📝 📄 🖴 🖎 🐝 🕰 📈	🖹 🛍 • 🎸 🏷 • 🖉 • 🍪 🏢 •	2/ 🛗 🧭 🧰 🗑	🎢 🔍 🕜 🖕 🕴 Find	✓ ♦ ♠ +		
 Text Private State Stat	📴 Default				<u>A</u> • 隆 • 🙇 • 🖕 🗄	IF 🚍 🤃 🗢 🗢 🤤 🔂 IF 🕆 🦷		
database. One job respons ibility was to develop reports using Oracle PL/SQL and Microsoft ✓		John Doe E-mail: john@example.co E-mail: john@example.co May 2013 IT InformationMa nag IT InformationMa nag IProjects were exec projects were exec project skills like Java Mail API to cr Developed a frame Labs worldwide. Th Function managers and integrated wit Developed Busines heavily using SQL Developed Busines heavily using SQL Developed diver locating hardware configuration man Visual Studio and Designed and impl analVices on CMDB value energy savin using JDBC/SQL at May 2007- August2007	m Mobile: (555) 555-7540 ement Developer, XYZ Co. ruted in a Rational Unified Process iterative life cy collecting & negotiating requirements and delivery s and deadlines, unit and functional testing, user upport. lemented a J2EE application for aggregating event al data. The application integrated Dolg, JAXB, We reate rich browser UIs and e-mails. work web application for reporting on all aspects he application served as a tool for assessing the st s and lab directors worldwide. J2EE application wr h the Eclipse BIRT project as the reporting engine assets. Scanned assets and their configurations a integrated with IBM DB2 Everyplace for synchron lemented a J2EE application for scoring computing ation integrated J/Uews Charts Enterprise using JS lemented a project for reporting and improving a 8 data. The output report details areas for improve ags compared to the amount of effort to accomplis and XML/XSLT/XPath. ship, ABCInc. d debugged changes to JSP pages throughout the o sing the NetBeens IDE.	2 12 N Toronte, ycle. Gained a spectrum of valuables, modeling, planning acceptability, production t driven e-mails and notification bayberg feature pack for XML of the IT environment for IBM tate of the IT environment for IBM tate of the IT environment for ritten in Rational Software Arc bayberg for auditing, managing and are sent from the device to the NET C# application written in izing data with the CMDB. g resource utilization in our da F for chart graphics. data centre's efficiency by exe- ment. The score is weighted to the the savings. Java application development cycle of three fin	Aain SL Ontario AIA 1A1 nable ons and 1 SWG hit ect use in atta cuting o n sance cle	Properties × = Text Image: Slab 10 v Image: Slab Image		
Page 1 / 2 Default English (USA) INSRT STD Level 1 Image: Default	<	database. One job	responsibility was to develop reports using Oracle	PL/SQL and Microsoft				
	Page 1 / 2	Default	English (USA) INSRT S	TD	Level 1			

The project today

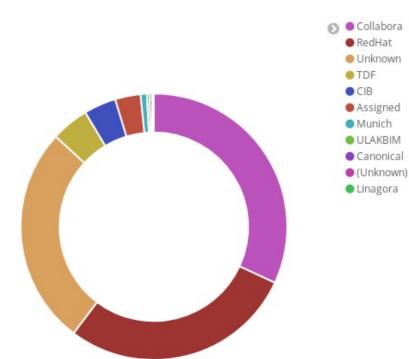
Development figures


- Around 400 weekly commits by 50 different authors
- 9M lines of code
- ~28 years of history

"Exact history was lost before Sept. 18th, 2000, but old source code comments show that Writer core dates back until at least November 1990."


- Still 50000 lines of German code comments when LibreOffice was forked!
 - Bug closed in 2018

Stats: German comments

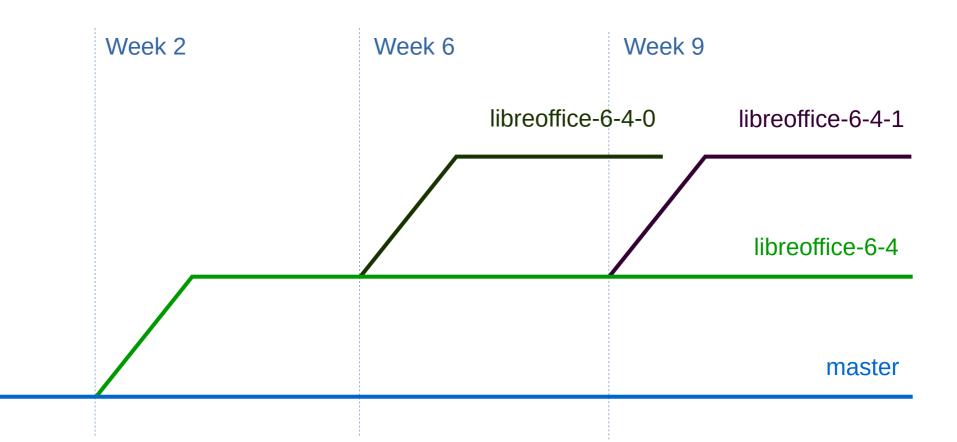

Detected lines of German comment

Stats: commits (Oct 16-Sep 18)

Stats: commits (Oct 16-Sep 18)

Organizations

Release calendar


- Release early, release often
- Major release every six months (6.3.0)
 - Brings new features
- Minor release ~ every month (6.3.1, etc.)
 - Bugfixing only
- End of life: 9 months
- Always two versions coexisting
 - Right now: 6.2.8 and 6.3.3

Release calendar

- Plan for 6.4
 - https://wiki.documentfoundation.org/ReleasePlan

Release	Freeze	Publishing		
6.4.0 (freeze: week 02)	Week 42 , Oct 14, 2019 - Oct 20, 2019	Week 05 , Jan 27, 2020 - Feb 2, 2020		
6.4.1	Week 06 , Feb 3, 2020 - Feb 9, 2020	Week 09 , Feb 24, 2020 - Mar 1, 2020		
6.4.2	Week 09 , Feb 24, 2020 - Mar 1, 2020	Week 12 , Mar 16, 2020 - Mar 22, 2020		
6.4.3	Week 13 , Mar 23, 2020 - Mar 29, 2020	Week 16 , Apr 13, 2020 - Apr 19, 2020		
6.4.4	Week 18 , Apr 27, 2020 - May 3, 2020	Week 21 , May 18, 2020 - May 24, 2020		
6.4.5	Week 24 , Jun 8, 2020 - Jun 14, 2020	Week 27 , Jun 29, 2020 - Jul 5, 2020		
6.4.6	Week 30 , Jul 20, 2020 - Jul 26, 2020	Week 33 , Aug 10, 2020 - Aug 16, 2020		
6.4.7	Week 39 , Sep 21, 2020 - Sep 27, 2020	Week 42 , Oct 12, 2020 - Oct 18, 2020		
End of Life	November 30, 2020			

Branch model

Organizing a community

- The Document Foundation umbrella
 - Owns trademarks
 - Collects donations
 - Provides services to community
 - Organizes events
 - Occasionally funds development

Organizing a community

- Communication channels
 - Mailing lists
 - IRC
 - Bug tracker and code review
- Committees and teams
 - Engineering Steering Committee
 - Design team
 - QA team

Organizing a community

 Ultimately, individuals and companies define the project priorities by providing effort

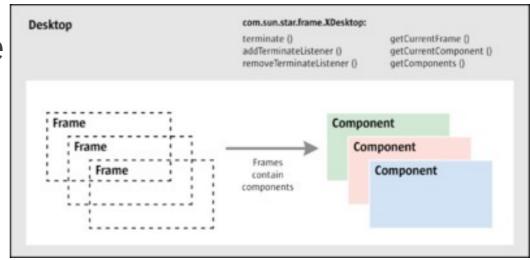
Current lines of work

- Mobile and cloud versions
 - LibreOfficeKit API
- Support more document types
 - OOXML
 - Document Liberation Project
- GTK+ 3, Wayland, KDE Plasma
- UX improvements (design team)
- Polish

Architecture

General considerations

- There is not a global, application-wide design
 - Document filters: finite-state machine
 - VCL (visual components library): modeled after existing UI frameworks
 - Document model: Frame-Controller-Model


Frame-Controller-Model

- Model
 - Represents an object from the document
 - Text, shapes, spreadsheet cells
- Controller
 - Interaction between the screen and the model
 - Observes the model
 - Manipulates the presentation but not the model
- Frame
 - Bidirectional communication between controller and UI
 - Hierarchical organization

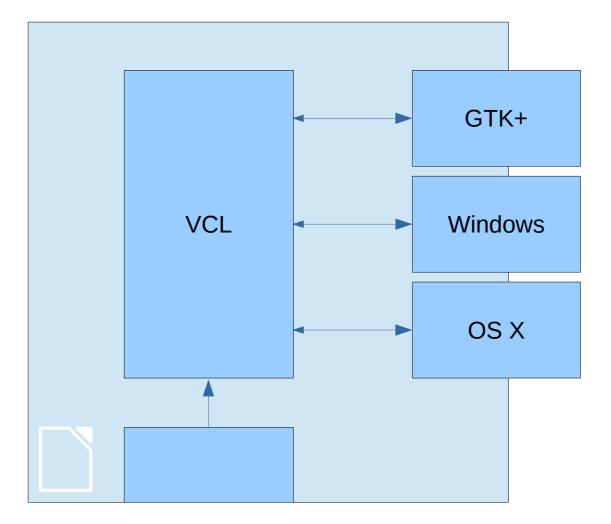
Other elements

• Component

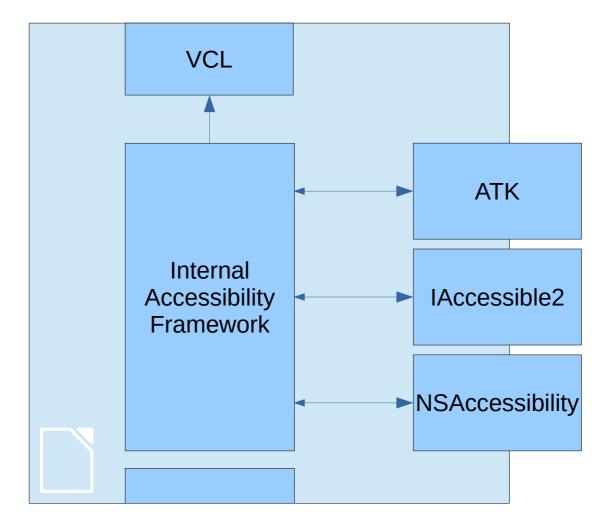
- Common interface between controller and frame
- A frame can contain several components, which are either controllers of other frames
- Desktop
 - Hierarchy root frame
 - Specific interface

Dispatch framework

- Communication interfaces between components and UI
- Commands expressed by a URL
- Implemented in frames and controllers
- Responsibility chain
 - Traverse the hierarchy until reaching the one implementing the command

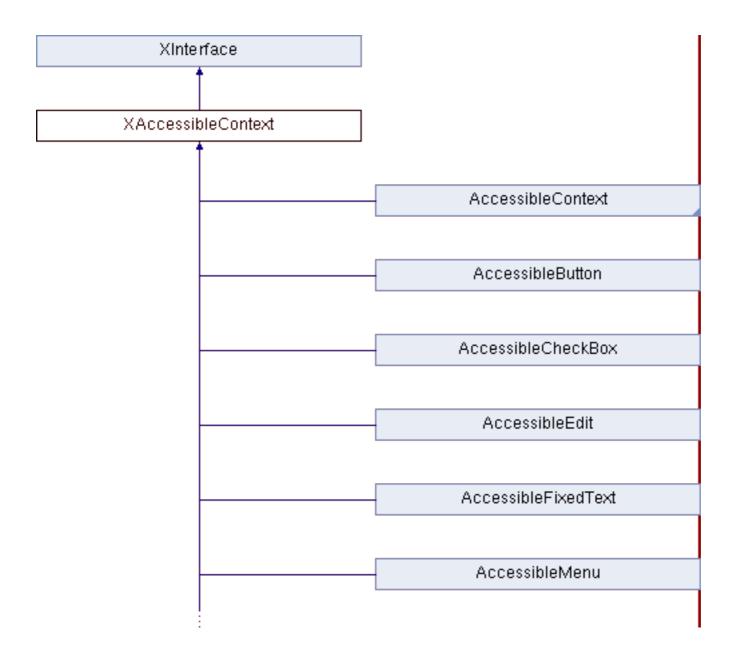

Other considerations

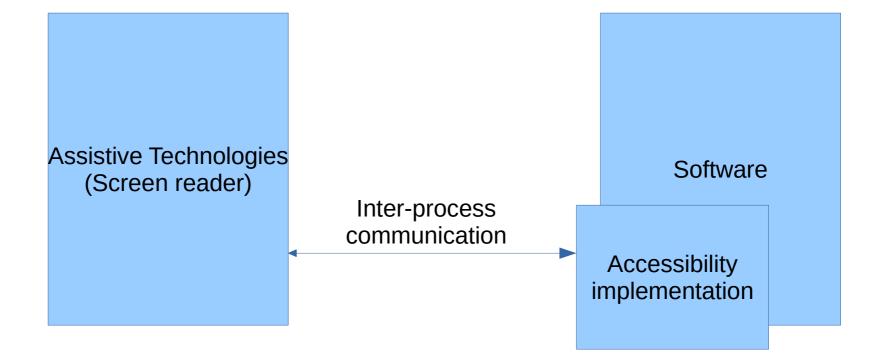
- Sometimes, interfaces expose the Frame-Controller-Model architecture but the implementation does not match
 - Historical reasons: architecture was engineered over an existing code base
 - Need to provide uniform API


Visual components library

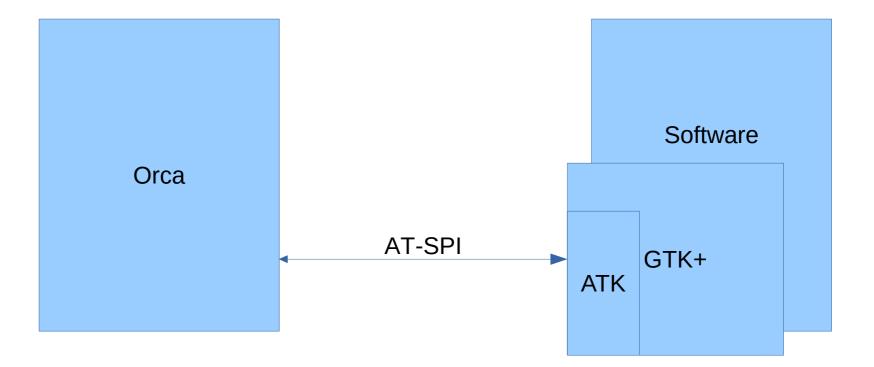
- Abstract UI elements: buttons, menus, etc.
- Each abstract element wraps an actual element of a supported UI framework
- Several UI frameworks available, enabled in compile time
 - GTK+, Windows, OSX

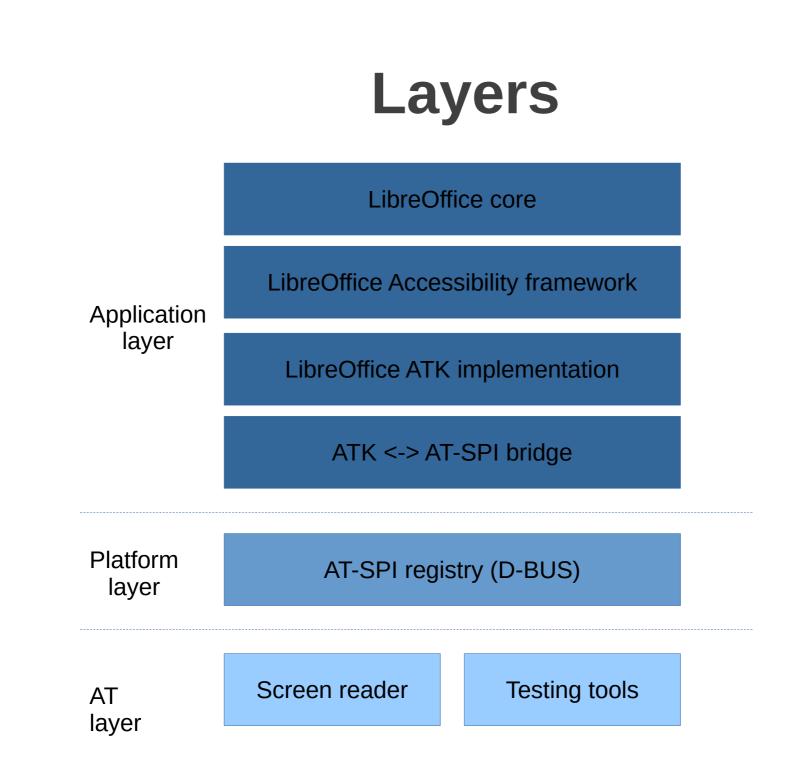
Visual components library


Accessibility framework


Accessibility framework

- Abstract accessible elements: buttons, menus, etc.
- Accessible elements match members of the VCL and wrap native classes of the a11y framework
- Several frameworks available, enabled in compile time
 - ATK (Linux), IAccessible2 (Windows), NSAccessibility (OSX)


Interfaces involved in a11y



An abstract screen reader

Screen reader (GNOME)

Quality assurance

Techniques and tools

- Peer review
- Unit tests
- Continuous integration
- Crashtests
- Static code analysis
- Bug triaging
 Regression detection tools
- Manual testing

Peer review

- master branch
 - Committers without review, 1 review for others
- libreoffice-6-4 branch:
 - Only bugfixing
 - +1 review in any case
- libreoffice-6-4-x branches:
 - Only patches from 6-4 branch
 - +2 reviews

Peer review

Peer review

Change 12213 by sushil_shinde Review in Progress C Reply							
Reviewers CC Project	test_jenkins_mac Q. core	Commit Author Committer	sushil_shinde	2e7873e5de11f7e9 <sushilshinde@libr <sushilshinde@libr< td=""><td>eoffice.org></td><td>(gitweb) Nov 3, 2014 8:23 AM Nov 3, 2014 10:53 AM</td></sushilshinde@libr<></sushilshinde@libr 	eoffice.org>	(gitweb) Nov 3, 2014 8:23 AM Nov 3, 2014 10:53 AM	
Branch Strategy Updated Change-	master Cherry Pick 23 hours ago I5d664867c982e48d2ff01363659282354822e541	 fdo#85491 : break parameter incorrectly set in .XLSX import. 1) TextBreak Parameter was bydefault 'false'. 2) At xichart.cxx::convert() [line:2973] 'TextBreak' property was changed as per 'labelFreq' value. 4) I have done same thing here and by doing this no existing unit test was failed. 					
Topic Code-Revi	iew		5) Added unit test to check 'TextBreak' value for chart. Change-Id: I5d664867c982e48d2ff01363659282354822e541				
Verified							
Files		Diff against:	Base				
Corr	File Path			Comments	Size		
 Commit Message chart2/qa/extras/chart2import.cxx 					21		
A chart2/ga/extras/data/xlsx/chart-label-text-break.xlsx							
oox/source/drawingml/chart/axisconverter.cxx					2		
00/4	source, arawing information statistical test			+2	22, -1	i i i i i i i i i i i i i i i i i i i	
History		Expand All					
	il_shinde aded patch set 1.						
	jenkins_mac Set 1:						
Build	Started http://ci.libreoffice.org/job/gerrit_master/431/						
	jenkins_mac Set 1:						
	Successful						
	/ci.libreoffice.org/job/gerrit_master/431/ : SUCCESS						

LibreOffice

Unit tests

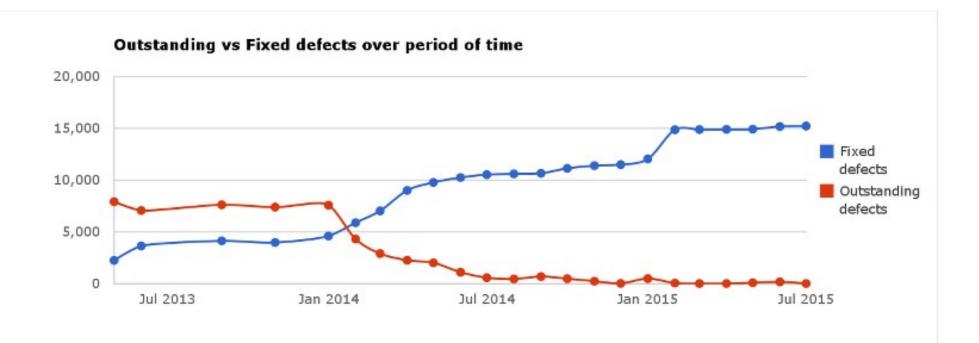
- Check key elements in documents
 - Import
 - Import + export + import
- Variable coverage
 - Good coverage for new document formats
- No automated UI testing as for now

Continuous integration

- Several machines are periodically compiling LibreOffice
 - Daily or several times per day
 - Also run unit tests
- Compile patches in code review
- Different platforms
 - All supported platforms and some more (Android, iOS)
- Different compilation options

Continuous integration

< > G FI 🌣 http://tinderbox.libreoffice.org/MASTER/status.html × Tinderbox Status Page tree: MASTER Created at: Mon Nov 3 14:20 Add to Notice Board Regnerate HTML Pages Administrate this tree (MASTER) Tinderbox Index Build Time (UTC) inux-rpm deb-16 45-TDF-dbg x86 64 46-TDF Guilty enkins Jenkins MacOSX ×86 Time 1/03 14:2 03 13: 13:10 details <u>details</u> 14.10 details 14:00 13:00 03 13:50 12:5 details rs: 225 core 12:40 13:40 13:30 12:30 13:20 12:20 13:10 12:10 <u>details</u> 13:00 12:00 1/03 12:50 11 /03 11:50 <u>details</u> 12:40 11:40 details errs: 33 <u>core</u> 12:30 11:30 12:20 11:20 12:10 11:10 details errs: 225 core rrs: 33 cor 12:00 11:00 3 10:50 details 3 11:50 11:40 10:40 11:30 10:30 11:20 10:20 11:10 10:10 details rs: 33 cor 10:00 11:00 details errs: 33 core 3 10:50 09:5 details errs: 45 _____core details core 09.40 10.40 10:30 09:30 10:20 09:20 details 80 co details core 10:10 09:10 details errs: 33 details errs: 33 corr details 09:00 detail 10:00 <u>details</u> errs: 33 11/03 09:50 /03 08:50 <u>details</u> 09:40 08:40 09:30 08:30 09:20 08:20 09:10 08:10 09:00 08:00 rs: 3616 co 3 08 50 08:40 07.40 08:30 07:30 08:20 07:20 08:10 07:10 08:00 07:00 /03 07:50 3 06: 50 07:40 06:40


Crashtests

- Check crashes when opening and saving documents
- Sample size: 92000 documents
 - Most come from bug reports
- Periodicity: weekly

Static code analysis

- Tool Coverity Scan
 - Free for open source projects
- Detects: dead code, uninitialized variables, uncaught exceptions...
- Defect density reduced from 1,1 to ~0
 - Density measured in defects every 1000 lines
 - Average for similar sized projects: 0,71

Static code analysis

Bug triaging

- Periodically check bugzilla reports
 - Confirm bugs
 - Detect duplicates
 - Prioritize
 - Verify patches

Regression detection tools

- Regression: a problem that was not present in previous versions
- Main tool to fix regressions: *bisect*
 - Binary search of the guilty commit
 - Recompilation cycle makes it unfeasible in LibreOffice
- LibreOffice tool: *bi-bisect (binary bisect)*
 - Binary repository from different development stages
 - Recompilation not necessary

Manual testing

- List of tests to be manually run
 - Tool: MozTrap
 - Testing rounds for every pre-release (betas, release candidates)
- "Freestyle" testing
- Bug hunting sessions

¡Thank you!

