
  

static void
_f_do_barnacle_install_properties(GObjectClass 

*gobject_class)
{

  GParamSpec *pspec;
 

  /* Party code attribute */
  pspec = g_param_spec_uint64 

(F_DO_BARNACLE_CODE,
       "Barnacle code.",
       "Barnacle code",

       0,
       G_MAXUINT64,

       G_MAXUINT64 /* 
default value */,

       G_PARAM_READABLE 
| G_PARAM_WRITABLE | 

       G_PARAM_PRIVATE);

  g_object_class_install_property (gobject_class,
   

F_DO_BARNACLE_PROP_CODE,

Modest
Creating a modern mobile 
email client with gnome 
technologies

José Dapena Paz 
 jdapena AT igalia DOT com

Sergio Villar Senín
 svillar AT igalia DOT com



  

Brief history

● Started in 2006

● 2007 Targeted for Maemo Chinook

● December 2007 first beta release

● 2008 Maemo Diablo

● 2009 Development becomes public. 
Repository moved to git



  

How big is it?

● Modest

Total Physical Source Lines of Code 
(SLOC)                = 104,675

● Tinymail

Total Physical Source Lines of Code 
(SLOC)                = 179,363



  

Goals



  

Easy to use



  



  

Embedded devices

● Small resources
● Small screen
● Small storage



  

Multiple UI. 
Common logic



  

Gnome UI



  

Maemo 4/Diablo UI



  

Maemo 5/Fremantle UI

Coming soon...



  

Support for most common email 
protocols

● IMAP

● POP

● SMTP



  

Push email

IMAP IDLE



  

Extensibility

New plugin architecture



  

Architecture



  

Architecture

Gtk+

Pango

Alarm

GConf

MCE  Abook

Hildon 2 GLib

GtkHTML

libtinymail-camel

camel-lite

IMAP SMTPPOP

libtinymail-gtk libtinymail-maemo

Modest 
plugin Xproto

 Camel Xproto

Xproto daemon

Modest
Plugin Yproto

Camel Yproto

M
od

e
st

T
in
ym
ai
l



  

Camel-lite



  

mmap-ed summaries

● Very reduced memory usage

● Very compact representation on disk

● Efficient use of memory (thx kernel)



  

IMAP IDLE support



  

Camel features out-of-the-box

● Great support for MIME

● Stream based API

● Modular extensible



  

Tinymail

● Multiple platforms

● Simplifies Camel API's

● Integrated Glib mainloop

● Gtk+ widgets

● Asynchronous API. Responsive UI

● Modular design



  

Modest

● Message view based on gtkhtml

● Rich message editor based on wpeditor

● Offline read of messages and folders

● Integration with network status libraries



  

Migration to Hildon 2.2



  

Hildon 2.2/Fremantle philosophy

● Proper experience with finger in small 
screens. No stylus.

● No focus in views.
● Actions are not repeated through UI.
● No hierarchy in menus.
● No scrollbars -> Pannables.
● No tabs.
● Stackable windows



  

What to change in modest?

Goal

Mail simple for everyone!



  

Main window replacements

● Main window. Very complex.

● Required stylus. Fingers usage is 
broken.

● Move from old main window to "one 
window per object handled". Stackables. 
New window management



  

Main window replacements



  

Main window replacements



  

Main window replacements



  

Main window replacements



  

Show relevant information

Small space for important information.



  

Show relevant information



  

Show relevant information



  

Very complex menus



  

Very complex menus



  

No focus



  

No focus



  

No focus



  

Migrate to finger widgets



  

Migrate to finger widgets



  

Migrate to finger widgets



  

What we did? More things

● Reused widgets for Diablo, 
reorganised in new windows.

● Stacking views. One window at a 
time

● Pannables everywhere.



  

DEMO



  

Challenges



  

Challenges

● Massive email accounts (Gmail like)

● High volume of information in small 
screens.

● Performance requirements

● Slow network connection.

● Plugin API.



  

Challenge 1: massive email 
accounts

● Improved speed handling massive 
folders.

● Faster response loading folder 
window.

● Show fast last received messages. 
Those user wants.



  

Challenge 2: high volumes of 
information in small screens

● Lots of bugfixing.

● Stabilization with big folders. More 
reliable now.

● Camel-lite summary helps on disk 
storage.

● Also more reliable with slow or flaky 
networks.



  

Challenge 3: performance

● Priority to perceived speed.

● Show immediately information 
user needs.

● Better handling of big messages.



  

Challenge 4: better MIME support

●Fixed support for reading signed messages.

● Reply adds References: field.

● Multibody supported now (yes! 
maemo-developers digests!)

● Reply to HTML-only messages 
properly quotes.



  

Challenge 5: plugin architecture

Support for adding other protocols as 
plugins.

● Storage and transport in a camel 
backend.

● Modest plugin for settings UI

● Other protocols? NNTP? RSS? Mobile 
messages? You're invited!



  

Conclusions



  

Work done in 2009

● Finger enabled UI
● More reliable
● Plugins support
●Easier for user

●Faster, better user experience

●Better support of mail standards



  

Future

● Pluggable storage support.

● Daemonize.

● Take more advantage of plugins 
architecture.

● Sorting? No please, live search



  

Get involved

● https://git.maemo.org/projects/modest

● http://modest.garage.maemo.org

● #modest @ Freenode
● modest-devel@garage.maemo.org

● modest-users@garage.maemo.org

Questions?

https://git.maemo.org/projects/modest
http://modest.garage.maemo.org/


  

Thanks!


